Barcode Detection and Classification using SSD (Single Shot Multibox Detector) Deep Learning Algorithm

2020 ◽  
Author(s):  
Akshata Kolekar ◽  
Vipul Dalal
Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2699 ◽  
Author(s):  
Redhwan Algabri ◽  
Mun-Taek Choi

Human following is one of the fundamental functions in human–robot interaction for mobile robots. This paper shows a novel framework with state-machine control in which the robot tracks the target person in occlusion and illumination changes, as well as navigates with obstacle avoidance while following the target to the destination. People are detected and tracked using a deep learning algorithm, called Single Shot MultiBox Detector, and the target person is identified by extracting the color feature using the hue-saturation-value histogram. The robot follows the target safely to the destination using a simultaneous localization and mapping algorithm with the LIDAR sensor for obstacle avoidance. We performed intensive experiments on our human following approach in an indoor environment with multiple people and moderate illumination changes. Experimental results indicated that the robot followed the target well to the destination, showing the effectiveness and practicability of our proposed system in the given environment.


This paper is to present an efficient and fast deep learning algorithm based on neural networks for object detection and pedestrian detection. The technique, called MobileNet Single Shot Detector, is an extension to Convolution Neural Networks. This technique is based on depth-wise distinguishable convolutions in order to build a lightweighted deep convolution network. A single filter is applied to each input and outputs are combined by using pointwise convolution. Single Shot Multibox Detector is a feed forward convolution network that is combined with MobileNets to give efficient and accurate results. MobileNets combined with SSD and Multibox Technique makes it much faster than SSD alone can work. The accuracy for this technique is calculated over colored (RGB images) and also on infrared images and its results are compared with the results of shallow machine learning based feature extraction plus classification technique viz. HOG plus SVM technique. The comparison of performance between proposed deep learning and shallow learning techniques has been conducted over benchmark dataset and validation testing over own dataset in order measure efficiency of both algorithms and find an effective algorithm that can work with speed and accurately to be applied for object detection in real world pedestrian detection application.


2021 ◽  
Author(s):  
Yun Liu ◽  
Zhi-cong Chen ◽  
Chun-ho Chu ◽  
Fei-Long Deng

Abstract Background: To explore the capacity of a single shot multibox detector (SSD) and Voxel-to-voxel prediction network for pose estimation (V2V-PoseNet) based artificial intelligence (AI) system in automatically designing implant plan. Methods: 2500 and 67 cases were used to develop and pre-train the AI system. After that, 12 patients who missed the mandibular left first molars were selected to test the capacity of the AI in automatically designing implant plan. There were three algorithms-based implant positions. They are Group A, B and C (8, 9 and 10 points dependent implant position, respectively). The AI system was then used to detect the characteristic annotators and determine the implant position. For every group, the actual implant position was compared with the algorithm-determined ideal position. And global, angular, depth and lateral deviation were calculate. One-way ANOVA followed by Tukey’s test was performed for statistical comparisons. The significance value was set at P< 0.05. Results: Group C represented the least coronal (0.6638±0.2651, range: 0.2060 to 1.109 mm) and apical (1.157±0.3350, range: 0.5840 to 1.654 mm) deviation, the same trend was observed in the angular deviation (5.307 ±2.891°, range: 2.049 to 10.90°), and the results are similar with the traditional statistic guide.Conclusion: It can be concluded that the AI system has the capacity of deep learning. And as more characteristic annotators be involved in the algorithm, the AI system can figure out the anatomy of the object region better, then generate the ideal implant plan via deep learning algorithm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kitsada Thadson ◽  
Sarinporn Visitsattapongse ◽  
Suejit Pechprasarn

AbstractA deep learning algorithm for single-shot phase retrieval under a conventional microscope is proposed and investigated. The algorithm has been developed using the context aggregation network architecture; it requires a single input grayscale image to predict an output phase profile through deep learning-based pattern recognition. Surface plasmon resonance imaging has been employed as an example to demonstrate the capability of the deep learning-based method. The phase profiles of the surface plasmon resonance phenomena have been very well established and cover ranges of phase transitions from 0 to 2π rad. We demonstrate that deep learning can be developed and trained using simulated data. Experimental validation and a theoretical framework to characterize and quantify the performance of the deep learning-based phase retrieval method are reported. The proposed deep learning-based phase retrieval performance was verified through the shot noise model and Monte Carlo simulations. Refractive index sensing performance comparing the proposed deep learning algorithm and conventional surface plasmon resonance measurements are also discussed. Although the proposed phase retrieval-based algorithm cannot achieve a typical detection limit of 10–7 to 10–8 RIU for phase measurement in surface plasmon interferometer, the proposed artificial-intelligence-based approach can provide at least three times lower detection limit of 4.67 × 10–6 RIU compared to conventional intensity measurement methods of 1.73 × 10–5 RIU for the optical energy of 2500 pJ with no need for sophisticated optical interferometer instrumentation.


2021 ◽  
Vol 13 (9) ◽  
pp. 1779
Author(s):  
Xiaoyan Yin ◽  
Zhiqun Hu ◽  
Jiafeng Zheng ◽  
Boyong Li ◽  
Yuanyuan Zuo

Radar beam blockage is an important error source that affects the quality of weather radar data. An echo-filling network (EFnet) is proposed based on a deep learning algorithm to correct the echo intensity under the occlusion area in the Nanjing S-band new-generation weather radar (CINRAD/SA). The training dataset is constructed by the labels, which are the echo intensity at the 0.5° elevation in the unblocked area, and by the input features, which are the intensity in the cube including multiple elevations and gates corresponding to the location of bottom labels. Two loss functions are applied to compile the network: one is the common mean square error (MSE), and the other is a self-defined loss function that increases the weight of strong echoes. Considering that the radar beam broadens with distance and height, the 0.5° elevation scan is divided into six range bands every 25 km to train different models. The models are evaluated by three indicators: explained variance (EVar), mean absolute error (MAE), and correlation coefficient (CC). Two cases are demonstrated to compare the effect of the echo-filling model by different loss functions. The results suggest that EFnet can effectively correct the echo reflectivity and improve the data quality in the occlusion area, and there are better results for strong echoes when the self-defined loss function is used.


Sign in / Sign up

Export Citation Format

Share Document