NAD+ Supplement Potentiates Tumor Killing Function by Rescuing Defective Tubby-Mediated NAMPT Transcription in Tumor Infiltrated T Cells

2021 ◽  
Author(s):  
Yuetong Wang ◽  
Fei Wang ◽  
Lihua Wang ◽  
Shizhen Qiu ◽  
Yufeng Yao ◽  
...  
Cell Reports ◽  
2021 ◽  
Vol 36 (6) ◽  
pp. 109516
Author(s):  
Yuetong Wang ◽  
Fei Wang ◽  
Lihua Wang ◽  
Shizhen Qiu ◽  
Yufeng Yao ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 7517-7517
Author(s):  
Joshua W. Keegan ◽  
Frank Borriello ◽  
Stacey M. Fernandes ◽  
Jennifer R. Brown ◽  
James A. Lederer

7517 Background: Alloplex Biotherapeutics has developed a cellular therapeutic that uses ENgineered Leukocyte ImmunoSTimulatory cell lines called ENLIST cells to activate and expand populations of tumor killing effector cells from human peripheral blood mononuclear cells (PBMCs). This process leads to a 300-fold expansion of NK cells, CD8+ T cells, NKT cells, and TCRγδ T cells that are called SUPLEXA cells, which will be cryopreserved and transferred back into patients as an autologous immune cell therapy for cancer. In this study, PBMCs from CLL patients were used to generate SUPLEXA cells as a first approach to comparatively profile SUPLEXA cells from cancer patients and normal healthy volunteers (NHVs). Methods: ENLIST cell lines were engineered by expressing curated immunomodulatory proteins in the SK-MEL-2 melanoma cell line. Two million (M) PBMCs from 10 CLL patients or 2 NHVs were incubated with 0.4 M freeze/thaw killed ENLIST cells for 5 days in XVIVO-15 medium with 2% heat-inactivated human AB serum (XAB2) and then split 1:15 in XAB2 containing IL-7 and IL-15 to expand. After 9 days, SUPLEXA cells were harvested and cryopreserved. Results: Original PBMCs and matched SUPLEXA cells from each donor were thawed and characterized by mass cytometry (CyTOF) using a 47-marker antibody panel. CyTOF staining results of PBMCs from CLL patients demonstrated approximately 95% leukemia cells and few T cells, NK cells, B cells, and monocytes. CyTOF staining of SUPLEXA cells from all 10 CLL patients showed expansion of NK cells (17%), CD8 T cells (11%), and CD4 T cells (7.5%) that were similar in phenotype to SUPLEXA cells from NHVs showing high expression of granzymes and perforin that are indicative of potent tumor cell killing activity. Cancer cells in the original CLL PBMC samples were reduced to 0.78%. However, a population of non-T/non-B cells (60% ± 9.5%) was detected in SUPLEXA cells from all CLL patients that require further characterization. Next, SUPLEXA cells from CLL and NHV patients were comparatively tested for tumor cell killing activity at 2:1, 1:1, and 1:2 effector to target cell (MEL-14 melanoma cells expressing RFP) ratios. Percent killing of tumor cells by SUPLEXA cells prepared from CLL patients (77.8% ± 2.6% at 2:1) and NHVs (81.5% ± 0.3% at 2:1) were nearly identical at all effector to target ratios. Conclusions: We demonstrate for the first time that PBMCs from CLL patients can be converted into SUPLEXA cells despite low numbers of normal immune cells at baseline and the known immunologic impairment present in CLL patients. Importantly, SUPLEXA cells derived from CLL patients acquire potent tumor killing activity that is indistinguishable from SUPLEXA cells prepared from NHVs. Taken together, these findings support the feasibility of converting PBMCs from CLL patients with low percentages of NK and T cells into an autologous cellular therapy for cancer.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e75589 ◽  
Author(s):  
Lei Wang ◽  
Yanran He ◽  
Ge Zhang ◽  
Juan Ma ◽  
Changzhen Liu ◽  
...  
Keyword(s):  
T Cells ◽  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2058
Author(s):  
Yihui Zhang ◽  
Zihan Yuan ◽  
Yi Jin ◽  
Wenkai Zhang ◽  
Wei-En Yuan

Small interfering RNA (siRNA) can specifically silence disease gene expression. This project investigated the overexpression of programmed death receptor ligand 1 (PD-L1) and vascular endothelial growth factor (VEGF) on the surface of tumor cells. However, the main obstacle to the development of gene therapy drugs is the lack of an efficient delivery vector, which should be able to overcome multiple delivery barriers and protect siRNA to enter the target cells. Therefore, a novel fluorine-modified endogenous molecular carrier TFSPEI was constructed by linking fluorinated groups with hydrophobic and hydrophilic characteristics on the surface of PEI and spermine. The results showed that lower toxicity, higher endocytosis, and silencing efficiency were achieved. We found that the inhibition of VEGF targets can indirectly activate the immune response to promote the tumor-killing and invasion effects of T cells. The combined delivery of anti-VEGF siRNA and anti-PD-L1 siRNA could inhibit the expression of corresponding proteins, restore the anti-tumor function of T cells and inhibit the growth of neovascularization, and obtained significant anti-tumor effects. Therefore, this safe and efficient fluorinated spermine and small molecule PEI-based anti-PD-L1 and anti-VEGF siRNA delivery system is expected to provide a new strategy for gene therapy of tumors.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2199-2199
Author(s):  
Matt L Cooper ◽  
Karl W. Staser ◽  
Julie Ritchey ◽  
Jessica Niswonger ◽  
Byung Ha Lee ◽  
...  

Abstract Background: Chimeric antigen receptor T cell (CART) therapy is revolutionizing modern cancer therapy, with two anti-CD19 CARTs FDA-approved for relapsed/refractory B cell lymphoma/leukemia and many other CARTs for solid and liquid tumors currently undergoing clinical trials. Our group recently demonstrated multiplexed CRISPR/Cas9 gene-editing of anti-CD7 CARTs to produce CD7 and T cell receptor alpha constant (TRAC)-deleted "off-the-shelf" universal (U)CART7s that effectively kill CD7+ T cell lymphoma in vivo without causing GVHD or fratricide (Cooper et al, Leukemia, 2018). However, in current clinical practice, suboptimal CART persistence and tumor killing permit tumor cell escape and, ultimately, disease relapse. Reasoning that a pro-lymphoid growth factor could promote CART efficacy, we supplemented UCART infusion with subcutaneous injections of the long-acting form of recombinant human interleukin-7 fused with hybrid Fc (rhIL-7-hyFc, NT-I7) in vivo using a CD19+ lymphoma xenograft model. Methods: To create anti-CD19 universal CARTs (UCART19), we activated human T cells on CD3/CD28 beads, electroporated the T cells with Cas9 mRNA and a TRAC-targeted gRNA, and virally transduced an anti-CD19 scFv 3rd generation CAR containing a peptidase 2A-cleaved human CD34 construct for both purification and tracking in vivo. Residual TRAC+ cells were depleted using magnetic selection. For xenograft tumor modeling in vivo, we injected NOD-scid IL2Rgammanull (NSG) mice with 5x105 RamosCBR-GFP cells four days prior to UCART19 (2x106 cells). Mice were treated with NT-I7 (10mg/kg SC) on days +1, +15 and +29 post UCART19 infusion. Results:RamosCBR-GFP mice receiving NT-I7 without UCART19 (NT-I7 only group) survived marginally longer (24 day med survival) than mice receiving RamosCBR-GFP cells alone (No tx group) (21 day medium survival, p=0.018, NT-I7 only vs. No Tx). While RamosCBR-GFP mice treated with UCART19 alone (UCART19 group) survived 33 days, 100% of RamosCBR-GFP mice treated with UCART19 and NT-I7 (UCART19+NT-I7 group) were alive at 80 days (Fig 1a), with no mouse showing signs of xenogeneic GVHD (p<0.0001, UCART19+NT-I7 vs. UCART19). At three weeks post UCART19 infusion, bioluminescent imaging (BLI) revealed minimal tumor signal in UCART19+NT-I7 treated mice (108 vs. 1010 photon flux/s, p<0.05, UCART19+NT-I7 vs. UCART19) and near-undetectable photon flux/s at four weeks (107 vs 1011 photon flux/s, p<0.0001, UCART19+NT-I7 vs. UCART19). Quantitative 17-parameter flow cytometric analyses of the blood, bone marrow, and spleens revealed an up to ~8000-fold increase in UCART19 cells in NT-I7-treated mice four weeks post UCART19 infusion (Fig 1a). These UCART19 cells demonstrated a predominantly effector and effector memory phenotype. Discussion: CARTs engineered to express interleukin-7 and CCL19 showed increased migration to and killing of solid tumors (Adachi et al, Nature Biotechnology, 2018). However, genetically engineered potentiation strategies lack "off-switches" and may preclude additional genetic enhancements required for universal "off-the-shelf" CART development. Here, we demonstrate that a pharmacological grade long-acting interleukin-7 agonist can potentiate adoptive cellular therapies. Specifically, NT-I7 can dramatically enhance gene modified T cell proliferation, persistence and tumor killing in vivo, resulting in enhanced survival, providing a tunable clinic-ready adjuvant for reversing suboptimal CART activity in vivo. Disclosures Cooper: WUGEN: Consultancy, Equity Ownership. Lee:NeoImmuneTech: Employment. Park:NeoImmuneTech: Employment.


2020 ◽  
Vol 31 (7) ◽  
pp. 1775-1783 ◽  
Author(s):  
Christian Pellegrino ◽  
Nicholas Favalli ◽  
Michael Sandholzer ◽  
Laura Volta ◽  
Gabriele Bassi ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e109961 ◽  
Author(s):  
Shu-Ching Chen ◽  
Yu-Chia Su ◽  
Ya-Ting Lu ◽  
Patrick Chow-In Ko ◽  
Pei-Yu Chang ◽  
...  

2019 ◽  
Author(s):  
Liqiang Pan ◽  
Chan Cao ◽  
Changqing Run ◽  
Liujuan Zhou ◽  
James J. Chou

Targeting T-cells against cancer cells is a direct means of treating cancer, and already showed great responses in clinical treatment of B-cell malignancies. A simple way to redirect T-cells to cancer cells is using multi-specific antibody (MsAb) that contains different arms for specifically “grabbing” the T-cells and cancer cells; as such, the T-cells are activated upon target engagement and the killing begins. Here, a Nucleic Acid mediated Protein-Protein Assembly (NAPPA) approach is implemented to construct a MsAb for T-cell engaging and tumor killing. Anti -CD19 and -CD3 single-chain variable fragments (scFvs) each are conjugated to different L-DNAs with sequences that form the Holliday junction, thus allowing spontaneous assembly of homogeneous protein-DNA oligomers containing two anti-CD19 and one anti-CD3 scFvs. The new MsAb shows strong efficacy in inducing Raji tumor cell cytotoxicity in the presence of T-cells with EC50 ~ 0.2 nM; it also suppresses tumor growth in the Raji xenograft mouse model. The data indicate that MsAbs assembled from protein-DNA conjugates are effective macromolecules for directing T-cells for tumor killing. The modular nature of the NAPPA platform allows rapid generation of complex MsAbs from simple antibody fragments, while offering a general solution for preparing antibodies with high-order specificity.


2020 ◽  
Author(s):  
Courtney Mowat ◽  
Shayla R. Mosley ◽  
Afshin Namdar ◽  
Daniel Schiller ◽  
Kristi Baker

SummaryColorectal cancers (CRCs) deficient in DNA mismatch repair (dMMR) are heavily infiltrated by CD8+ tumor infiltrating lymphocytes (TILs) and are associated with a better prognosis than the majority of CRCs. The immunogenicity of dMMR CRCs is commonly attributed to abundant neoantigen generation due to their extreme genomic instability. However, lack of neoantigenic overlap between these and other CRCs necessitates study of antigen-independent mechanisms of immune activation by dMMR CRCs in order identify therapeutic strategies for treating MMR proficient CRCs. We show here using organoid cocultures and orthotopic models that a critical component of dMMR CRC’s immunogenicity is the activation and recruitment of systemic CD8+ T cells into the tumor epithelium by overexpression of the chemokines CCL5 and CXCL10. This is dependent on endogenous activation of the cGAS/STING and IFN signaling pathways by the damaged DNA in dMMR CRCs. These signaling pathways remain sensitive to exogenous stimulation in other CRCs, identifying an attractive therapeutic avenue for increasing TIL infiltration into normally immune resistant CRC subtypes. We have thus identified a key neoantigen-independent mechanism that underlies the ability for dMMR CRCs to recruit TILs into the tumor epithelium. Given that TIL recruitment is a prerequisite for effective tumor killing either by the endogenous immune system or in the context of immunotherapies, treatments that activate IFN-induced chemokine-production by tumor cells promise to improve the prognosis of patients with many different CRC subsets.Statement of SignificanceA critical component of antitumor immunity in dMMR CRCs is their ability to recruit T cells into the tumor epithelium as a prerequisite to tumor cell killing. This occurs because their extensive genomic instability leads to endogenous activation of cGAS/STING and overexpression of CCL5 and CXCL10.


Sign in / Sign up

Export Citation Format

Share Document