Development and Construction of Poultry Egg Incubator Temperature and Humidity Controller (Peitch) With SMS Notification

2021 ◽  
Author(s):  
Noel Sobejana ◽  
Eden Joy Bacalso
Author(s):  
Yeshayahu Talmon

To achieve complete microstructural characterization of self-aggregating systems, one needs direct images in addition to quantitative information from non-imaging, e.g., scattering or Theological measurements, techniques. Cryo-TEM enables us to image fluid microstructures at better than one nanometer resolution, with minimal specimen preparation artifacts. Direct images are used to determine the “building blocks” of the fluid microstructure; these are used to build reliable physical models with which quantitative information from techniques such as small-angle x-ray or neutron scattering can be analyzed.To prepare vitrified specimens of microstructured fluids, we have developed the Controlled Environment Vitrification System (CEVS), that enables us to prepare samples under controlled temperature and humidity conditions, thus minimizing microstructural rearrangement due to volatile evaporation or temperature changes. The CEVS may be used to trigger on-the-grid processes to induce formation of new phases, or to study intermediate, transient structures during change of phase (“time-resolved cryo-TEM”). Recently we have developed a new CEVS, where temperature and humidity are controlled by continuous flow of a mixture of humidified and dry air streams.


2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Hanifa Marisa

An investigation had been done to Tetragonula (Tetragona) sp nest at Indralaya, South Sumatra to describe the Tetragonula sp nest that use streetlight pole as nest medium during April - May 2019. Purpossive sampling is used to select the target nest. Two streetlight pole found be used by Tetragonula sp as their home. The coordinate of location, heght from ground surface, diameter of streetlight pole, air temperature and humidity, and floral species around nest, were noted. Spot coordinate are S 30 14’ 19.2498’’ and E 1040 39’ 15,3288’’ ; 1,5 m above the ground surface, 12 cm diameter pole, highest air temperature was 35 o C at daylight (April and May 2019), 80 – 90 % humidity at April-May 2019; which Switenia macrophyla, Hevea brasiliensis, Zea mays, and Citrullus lanatus floral species are planted around. Air temperature in the pole is very high, around 40 0 C during daylight.


CHIPSET ◽  
2020 ◽  
Vol 1 (02) ◽  
pp. 61-68
Author(s):  
Anisha Fadia Haya ◽  
Werman kasoep ◽  
Nefy Puteri Novani

This study aims to create a system that can monitor gas cylinders where this device consists of two systems, the first is a system to measure the weight of 3kg LPG gas cylinders to find the remaining gas which will then be displayed on the LCD, and the second the system gives a notification (alarm) if there is a gas leak via SMS. This system consists of Arduino UNO Microcontroller components, Load cell Sensor, MQ-6 Sensor, and SIM800L GSM Module. For overall system testing, the load cell sensor system can display a percentage of the weight value obtained an error rate of 0%, this indicates that the formula used in the program runs according to what is desired. In the MQ-6 sensor system can make the buzzer on at a value >= 700 ppm, the results of the buzzer can live when the detected gas value >= 700 ppm, this is as desired. In the sim800L gsm module system can send leak notifications, the results obtained that the module can send SMS notifications. And the system turns on the buzzer when the LPG gas has reached the minimum limit, the results obtained by the buzzer will sound when the remaining gas value <= 16%. Based on tests conducted on this system the system can measure the desired weight of the cylinder to look for the remaining gas in the form of a percentage and detect a gas leak and then send an SMS notification.


Author(s):  
Jun-Xian Fu ◽  
Shukri Souri ◽  
James S. Harris

Abstract Temperature and humidity dependent reliability analysis was performed based on a case study involving an indicator printed-circuit board with surface-mounted multiple-die red, green and blue light-emitting diode chips. Reported intermittent failures were investigated and the root cause was attributed to a non-optimized reflow process that resulted in micro-cracks and delaminations within the molding resin of the chips.


Sign in / Sign up

Export Citation Format

Share Document