Characterization and Epidemiological Subtyping of Shiga Toxin-Producing Escherichia Coli Isolated from the Beef Production Chain in Gauteng, South Africa

2021 ◽  
Author(s):  
Libby Onyeka ◽  
Abiodun A. Adesiyun ◽  
Karen H. Keddy ◽  
Ayesha Hassim ◽  
Anthony M. Smith ◽  
...  
2021 ◽  
Author(s):  
Libby Obumneke Onyeka ◽  
Abiodun A. Adesiyun ◽  
Karen H. Keddy ◽  
Ayanda Manqele ◽  
Evelyn Madoroba ◽  
...  

2016 ◽  
Vol 7 ◽  
Author(s):  
Rocío Colello ◽  
María E. Cáceres ◽  
María J. Ruiz ◽  
Marcelo Sanz ◽  
Analía I. Etcheverría ◽  
...  

2019 ◽  
Vol 1 (9) ◽  
Author(s):  
Anthony M. Smith ◽  
Nomsa P. Tau ◽  
Bosco J. Kalule ◽  
Mark P. Nicol ◽  
Mignon McCulloch ◽  
...  

Toxins ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 424 ◽  
Author(s):  
Karama ◽  
Cenci-Goga ◽  
Malahlela ◽  
Smith ◽  
Keddy ◽  
...  

Shiga toxin-producing Escherichia coli (STEC) isolates (N = 38) that were incriminated in human disease from 2006 to 2013 in South Africa were characterized by serotype, virulence-associated genes, antimicrobial resistance and pulsed-field gel electrophoresis (PFGE). The isolates belonged to 11 O:H serotypes. STEC O26:H11 (24%) was the most frequent serotype associated with human disease, followed by O111:H8 (16%), O157:H7 (13%) and O117:H7 (13%). The majority of isolates were positive for key virulence-associated genes including stx1 (84%), eaeA (61%), ehxA (68.4%) and espP (55%), but lacked stx2 (29%), katP (42%), etpD (16%), saa (16%) and subA (3%). stx2 positive isolates carried stx2c (26%) and/or stx2d (26%) subtypes. All pathogenicity island encoded virulence marker genes were detected in all (100%) isolates except nleA (47%), nleC (84%) and nleD (76%). Multidrug resistance was observed in 89% of isolates. PFGE revealed 34 profiles with eight distinct clusters that shared ≥80% intra-serotype similarity, regardless of the year of isolation. In conclusion, STEC isolates that were implicated in human disease between 2006 and 2013 in South Africa were mainly non-O157 strains which possessed virulence genes and markers commonly associated with STEC strains that have been incriminated in mild to severe human disease worldwide. Improved STEC monitoring and surveillance programs are needed in South Africa to control and prevent STEC disease in humans.


Food Control ◽  
2020 ◽  
pp. 107746
Author(s):  
Libby O. Onyeka ◽  
Abiodun A. Adesiyun ◽  
Karen H. Keddy ◽  
Ayanda Manqele ◽  
Evelyn Madoroba ◽  
...  

2020 ◽  
Vol 86 (13) ◽  
Author(s):  
Peipei Zhang ◽  
Frances Tran ◽  
Kim Stanford ◽  
Xianqin Yang

ABSTRACT Decontamination practices, which often involve thermal treatments, are routinely performed in beef packing plants and have generally improved the safety of meat in North America. We investigated whether Escherichia coli in the beef production chain is becoming more heat resistant due to those treatments. Cattle isolates (n = 750) included seven serogroups (O157, O103, O111, O121, O145, O26, and O45) which were collected between 2002 and 2017. Beef plant isolates (n = 700) from carcasses, fabrication equipment, and beef products were included. Heat resistance was determined in Luria-Bertani broth at 60°C and by PCR screening for the locus of heat resistance (LHR). The decimal reduction for E. coli at 60°C (D60ºC values) ranged from 0 to 7.54 min, with 97.2% of the values being <2 min. The prevalence of E. coli with D60ºC values of >2 min was not significantly different (P > 0.05) among cattle and meat plant isolates. E. coli from equipment before sanitation (median, 1.03 min) was more heat resistant than that after sanitation (median, 0.9 min). No significant difference in D60ºC values was observed among E. coli isolates from different years, from carcasses before and after antimicrobial interventions, or from before and during carcass chilling. Of all isolates, 1.97% harbored LHR, and the LHR-positive isolates had greater median D60ºC values than the LHR-negative isolates (3.25 versus 0.96 min). No increase in heat resistance in E. coli was observed along the beef production chain or with time. IMPORTANCE The implementation of multiple hurdles in the beef production chain has resulted in substantial improvement in the microbial safety of beef in Canada. In this study, we characterized a large number of Escherichia coli isolates (n = 1,450) from various sources/stages of beef processing to determine whether the commonly used antimicrobial interventions would give rise to heat-resistant E. coli on meat, which in turn may require alternatives to the current control of pathogens and/or modifications to the current cooking recommendations for meat. The findings show that the degree and rate of heat resistance in E. coli did not increase along the production chain or with time. This furthers our understanding of man-made ecological niches that are required for the development of heat resistance in E. coli.


Sign in / Sign up

Export Citation Format

Share Document