scholarly journals 2SH-04 Imaging mass spectrometry revealed the polarized intracellular distribution of specific lipid molecular species(2SH Star of life shined by frontier microscopies,Symposium,The 50th Annual Meeting of the Biophysical Society of Japan)

2012 ◽  
Vol 52 (supplement) ◽  
pp. S16
Author(s):  
Mitsutoshi Setou
1999 ◽  
Vol 146 (4) ◽  
pp. 741-754 ◽  
Author(s):  
Roger Schneiter ◽  
Britta Brügger ◽  
Roger Sandhoff ◽  
Günther Zellnig ◽  
Andrea Leber ◽  
...  

Nano-electrospray ionization tandem mass spectrometry (nano-ESI-MS/MS) was employed to determine qualitative differences in the lipid molecular species composition of a comprehensive set of organellar membranes, isolated from a single culture of Saccharomyces cerevisiae cells. Remarkable differences in the acyl chain composition of biosynthetically related phospholipid classes were observed. Acyl chain saturation was lowest in phosphatidylcholine (15.4%) and phosphatidylethanolamine (PE; 16.2%), followed by phosphatidylserine (PS; 29.4%), and highest in phosphatidylinositol (53.1%). The lipid molecular species profiles of the various membranes were generally similar, with a deviation from a calculated average profile of ∼± 20%. Nevertheless, clear distinctions between the molecular species profiles of different membranes were observed, suggesting that lipid sorting mechanisms are operating at the level of individual molecular species to maintain the specific lipid composition of a given membrane. Most notably, the plasma membrane is enriched in saturated species of PS and PE. The nature of the sorting mechanism that determines the lipid composition of the plasma membrane was investigated further. The accumulation of monounsaturated species of PS at the expense of diunsaturated species in the plasma membrane of wild-type cells was reversed in elo3Δ mutant cells, which synthesize C24 fatty acid-substituted sphingolipids instead of the normal C26 fatty acid-substituted species. This observation suggests that acyl chain-based sorting and/or remodeling mechanisms are operating to maintain the specific lipid molecular species composition of the yeast plasma membrane.


2010 ◽  
Vol 50 (supplement2) ◽  
pp. S202-S203
Author(s):  
Takahiro Hayasaka ◽  
Naoko Goto-Inoue ◽  
Nobuturo Zaima ◽  
Kamlesh Shrivas ◽  
Yukiyasu Kashiwagi ◽  
...  

2020 ◽  
Author(s):  
Leonoor E.M. Tideman ◽  
Lukasz G. Migas ◽  
Katerina V. Djambazova ◽  
Nathan Heath Patterson ◽  
Richard M. Caprioli ◽  
...  

AbstractThe search for molecular species that are differentially expressed between biological states is an important step towards discovering promising biomarker candidates. In imaging mass spectrometry (IMS), performing this search manually is often impractical due to the large size and high-dimensionality of IMS datasets. Instead, we propose an interpretable machine learning workflow that automatically identifies biomarker candidates by their mass-to-charge ratios, and that quantitatively estimates their relevance to recognizing a given biological class using Shapley additive explanations (SHAP). The task of biomarker candidate discovery is translated into a feature ranking problem: given a classification model that assigns pixels to different biological classes on the basis of their mass spectra, the molecular species that the model uses as features are ranked in descending order of relative predictive importance such that the top-ranking features have a higher likelihood of being useful biomarkers. Besides providing the user with an experiment-wide measure of a molecular species’ biomarker potential, our workflow delivers spatially localized explanations of the classification model’s decision-making process in the form of a novel representation called SHAP maps. SHAP maps deliver insight into the spatial specificity of biomarker candidates by highlighting in which regions of the tissue sample each feature provides discriminative information and in which regions it does not. SHAP maps also enable one to determine whether the relationship between a biomarker candidate and a biological state of interest is correlative or anticorrelative. Our automated approach to estimating a molecular species’ potential for characterizing a user-provided biological class, combined with the untargeted and multiplexed nature of IMS, allows for the rapid screening of thousands of molecular species and the obtention of a broader biomarker candidate shortlist than would be possible through targeted manual assessment. Our biomarker candidate discovery workflow is demonstrated on mouse-pup and rat kidney case studies.HighlightsOur workflow automates the discovery of biomarker candidates in imaging mass spectrometry data by using state-of-the-art machine learning methodology to produce a shortlist of molecular species that are differentially expressed with regards to a user-provided biological class.A model interpretability method called Shapley additive explanations (SHAP), with observational Shapley values, enables us to quantify the local and global predictive importance of molecular species with respect to recognizing a user-provided biological class.By providing spatially localized explanations for a classification model’s decision-making process, SHAP maps deliver insight into the spatial specificity of biomarker candidates and enable one to determine whether (and where) the relationship between a biomarker candidate and the class of interest is correlative or anticorrelative.


2008 ◽  
Vol 48 (supplement) ◽  
pp. S31
Author(s):  
Tatsuya Yamamoto ◽  
Yoshihiro Shimizu ◽  
Takuya Ueda ◽  
Yoshitsugu Shiro

2000 ◽  
Vol 352 (1) ◽  
pp. 79 ◽  
Author(s):  
Xianlin HAN ◽  
Dana R. ABENDSCHEIN ◽  
John G. KELLEY ◽  
Richard W. GROSS

Sign in / Sign up

Export Citation Format

Share Document