scholarly journals Resistance change of contact groups of low-voltage electrical apparatus: Determining the laws

Vestnik MGTU ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 350-360
Author(s):  
E. I. Gracheva ◽  
A. N. Gorlov ◽  
A. N. Alimova ◽  
P. P. Mukhanova

The main Russian and foreign manufacturers of low-voltage electrical devices - circuit breakers, fuses, magnetic starters, knife switches and packet switches are presented. The data of experiments for determining the resistance values of contact groups of low-voltage switching equipment are considered. The design features of the devices that determine the value of the resistances of the power circuits of low-voltage equipment are investigated and a classification is proposed depending on the design elements of the devices. A methodological approach and an algorithm for experiments and detailed analysis of the contact groups of devices are given. Experimental schemes for the study of contact groups are proposed. The data of the conducted experiments on the study of contact groups and the resistance values as a function of the flowing currents are shown. During the experiments it is revealed that the value of the resistance of the contacts changes depending on the value, type and time of exposure to current within +/-5 %. The laws that characterize the ratio of the resistance values of the structural components of devices (contact systems, thermal relay, coil of the maximum relay) have been revealed and defined. Empirical expressions and graphical dependences of the resistances of contacts and contact systems are obtained as a function of the magnitude of the rated currents of low-voltage contact equipment. The minimum sample size of the number of devices during experimental research is determined, sufficient to calculate the mathematical expectation of the resistances of the contact connections of the devices with a given accuracy. As a result of experimental studies, it is revealed that the resistance value of contacts and contact joints can increase during operation by 2-2.5 times. The established dependences of the change in contact resistance can be used to predict the technical state of electrical installations of intrashop low-voltage networks, to clarify the amount of electricity losses in shop networks up to 1 kV, and can also be used as an additional regulation for maintenance and scheduled preventive maintenance.

Author(s):  
Adrian Plesca ◽  
Alina Scintee

Busbar technology is more and more used to realize connections within power supply systems in answer to the need of compactness. The integrated problem on heat conduction and radiation-convective heat exchange describes the temperature regime in current conductors and current carrying busbars of power electrical apparatus such as circuit breakers or high breaking capacity fuses. Beside steady-state conditions, the transient thermal regime of busbar has an important influence upon whole power supply system from thermal behaviour point of view. Hence, a 3D thermal analysis of a power system including fuse, low voltage circuit breaker and busbars connections, using a specific software package based on Finite Element Method, has been done. From 3D thermal modelling and simulations, the thermal transient impedance for the busbar has been computed. This allows a better correlation between protection characteristics of the fuse and circuit breaker and busbar design.


1997 ◽  
Vol 33 (5) ◽  
pp. 1372
Author(s):  
P. O'Donnell ◽  
W.F. Braun ◽  
C.R. Heising ◽  
P.P. Khera ◽  
M. Kornblit ◽  
...  

2010 ◽  
Vol 25 (1) ◽  
pp. 206-211 ◽  
Author(s):  
A. Balestrero ◽  
L. Ghezzi ◽  
M. Popov ◽  
L. van der Sluis

Author(s):  
И.Е. Кажекин

В работе рассмотрены вопросы безопасности бортовых электросетей объектов морской индустрии, показано влияние перенапряжений на их основные показатели, которыми определяются опасности смертельных электротравм, опасности возникновения пожаров и взрывов. Представлены результаты математического моделирования электрического разряда по уравнению Майра с учетом особенностей переходного процесса при однофазных замыканиях на корпус. Показана роль напряжения смещения нейтрали по постоянному потенциалу, наибольшие значения которого формируются при неустойчивом контакте фазы с корпусом судна. Описаны результаты экспериментальных исследований переходных процессов, сопровождающихся возникновением неустойчивыми искровыми разрядами. Сравнение результатов расчета по предложенной методике с результатами физических экспериментов показало весьма удовлетворительную сходимость. Предложенная модель может быть использована для уточнения показателей, характеризующих безопасность судовых электросетей. The paper deals with the safety issues of on-board power grids of the marine industry facilities, shows the influence of overvoltages on their main indicators, which determine the dangers of fatal electrical injuries, the risk of fires and explosions. The results of mathematical modeling of an electric discharge according to the Mayr equation, taking into account the features of the transient process in single-phase short circuits to the case, are presented. The role of the bias voltage of the neutral at a constant potential is shown, the highest values ​​of which are formed during unstable contact of the phase with the ship's hull. The results of experimental studies of transient processes accompanied by the appearance of unstable spark discharges are described. Comparison of the calculation results by the proposed method with the results of physical experiments showed a very satisfactory convergence. The proposed model can be used to refine the indicators characterizing the safety of ship power grids.


Vestnik MGTU ◽  
2020 ◽  
Vol 23 (4) ◽  
pp. 345-353
Author(s):  
E. I. Gracheva ◽  
A. N. Gorlov ◽  
A. N. Alimova

Determination of the main characteristics of the topology and technical condition of equipment underoperating conditions is necessary for analyzing and assessing power and electricity losses in intrashoplow-voltage industrial power supply networks. A comparative analysis of the technical characteristicsof automatic circuit breakers VA57-31 (KEAZ), NSX100 TM-D (Schneider Electric), DPX3 160 (Legrand), Tmax XT1 TMD (ABB) has shown that the main technical parameters of the machines are close in their values. At that it has been found out that automatic switches of the BA57-31 series have the lowest value of power losses per pole (7.5 W), whereas the automatic switches of the Tmax XT1 TMD series have the highest value (10 W). Thus, under the operating conditions of the equipment, the lowest value of power and electricity losses is characteristic of low-voltage electrical networks with installed circuit breakers of the BA57-31 series, and the highest value of losses is noted in in-shop systems with installed circuit breakers Tmax XT1 TMD. Using catalog data, the dependences of active power losses in circuit breakers on rated currents have been established; the algorithms have been developed and the obtained dependences have been modeled using approximating functions. The standard deviation of the compiled approximating functions has been calculated. Analytical expressions of the dynamics of power losses per pole have been determined as a function of the rated current. The graphical dependences of the investigated parameters of low-voltage equipment have been presented. The developed models are recommended to be used to increase the reliability of the assessment and refinement of the amount of active power and electricity losses in low-voltage electrical networks of industrial power supply systems, agrotechnical complexes, and enterprises of the public utility sector.


Sign in / Sign up

Export Citation Format

Share Document