scholarly journals Clinical utility of brain stimulation modalities following traumatic brain injury: current evidence

2015 ◽  
pp. 1573 ◽  
Author(s):  
Felipe Fregni ◽  
Shasha Li ◽  
Ana Zaninotto ◽  
Iuri Santana Neville ◽  
Wellingson Paiva ◽  
...  
2020 ◽  
Vol 35 (6) ◽  
pp. 919-919
Author(s):  
Lange R ◽  
Lippa S ◽  
Hungerford L ◽  
Bailie J ◽  
French L ◽  
...  

Abstract Objective To examine the clinical utility of PTSD, Sleep, Resilience, and Lifetime Blast Exposure as ‘Risk Factors’ for predicting poor neurobehavioral outcome following traumatic brain injury (TBI). Methods Participants were 993 service members/veterans evaluated following an uncomplicated mild TBI (MTBI), moderate–severe TBI (ModSevTBI), or injury without TBI (Injured Controls; IC); divided into three cohorts: (1) < 12 months post-injury, n = 237 [107 MTBI, 71 ModSevTBI, 59 IC]; (2) 3-years post-injury, n = 370 [162 MTBI, 80 ModSevTBI, 128 IC]; and (3) 10-years post-injury, n = 386 [182 MTBI, 85 ModSevTBI, 119 IC]. Participants completed a 2-hour neurobehavioral test battery. Odds Ratios (OR) were calculated to determine whether the ‘Risk Factors’ could predict ‘Poor Outcome’ in each cohort separately. Sixteen Risk Factors were examined using all possible combinations of the four risk factor variables. Poor Outcome was defined as three or more low scores (< 1SD) on five TBI-QOL scales (e.g., Fatigue, Depression). Results In all cohorts, the vast majority of risk factor combinations resulted in ORs that were ‘clinically meaningful’ (ORs > 3.00; range = 3.15 to 32.63, all p’s < .001). Risk factor combinations with the highest ORs in each cohort were PTSD (Cohort 1 & 2, ORs = 17.76 and 25.31), PTSD+Sleep (Cohort 1 & 2, ORs = 18.44 and 21.18), PTSD+Sleep+Resilience (Cohort 1, 2, & 3, ORs = 13.56, 14.04, and 20.08), Resilience (Cohort 3, OR = 32.63), and PTSD+Resilience (Cohort 3, OR = 24.74). Conclusions Singularly, or in combination, PTSD, Poor Sleep, and Low Resilience were strong predictors of poor outcome following TBI of all severities and injury without TBI. These variables may be valuable risk factors for targeted early interventions following injury.


Author(s):  
Allison P. Fisher ◽  
Lisa M. Gies ◽  
Leah Chapman ◽  
Jessica M. Aguilar ◽  
Keith Owen Yeates ◽  
...  

Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Daniel Agustin Godoy ◽  
Rafael Badenes ◽  
Paolo Pelosi ◽  
Chiara Robba

AbstractMaintaining an adequate level of sedation and analgesia plays a key role in the management of traumatic brain injury (TBI). To date, it is unclear which drug or combination of drugs is most effective in achieving these goals. Ketamine is an agent with attractive pharmacological and pharmacokinetics characteristics. Current evidence shows that ketamine does not increase and may instead decrease intracranial pressure, and its safety profile makes it a reliable tool in the prehospital environment. In this point of view, we discuss different aspects of the use of ketamine in the acute phase of TBI, with its potential benefits and pitfalls.


Brain Injury ◽  
2001 ◽  
Vol 15 (12) ◽  
pp. 1021-1028 ◽  
Author(s):  
Alisa Green ◽  
Kim Felmingham ◽  
Ian J. Baguley ◽  
Shameran Slewa-Younan ◽  
Shelley Simpson

2020 ◽  
Vol 29 (1) ◽  
pp. e13-e18
Author(s):  
Karin Reuter-Rice ◽  
Elise Christoferson

Background Severe traumatic brain injury (TBI) is associated with high rates of death and disability. As a result, the revised guidelines for the management of pediatric severe TBI address some of the previous gaps in pediatric TBI evidence and management strategies targeted to promote overall health outcomes. Objectives To provide highlights of the most important updates featured in the third edition of the guidelines for the management of pediatric severe TBI. These highlights can help critical care providers apply the most current and appropriate therapies for children with severe TBI. Methods and Results After a brief overview of the process behind identifying the evidence to support the third edition guidelines, both relevant and new recommendations from the guidelines are outlined to provide critical care providers with the most current management approaches needed for children with severe TBI. Recommendations for neuroimaging, hyperosmolar therapy, analgesics and sedatives, seizure prophylaxis, ventilation therapies, temperature control/hypothermia, nutrition, and corticosteroids are provided. In addition, the complete guideline document and its accompanying algorithm for recommended therapies are available electronically and are referenced within this article. Conclusions The evidence base for treating pediatric TBI is increasing and provides the basis for high-quality care. This article provides critical care providers with a quick reference to the current evidence when caring for a child with a severe TBI. In addition, it provides direct access links to the comprehensive guideline document and algorithms developed to support critical care providers.


Sign in / Sign up

Export Citation Format

Share Document