On the gravitational dual to strongly coupled fluids

2021 ◽  
Author(s):  
◽  
Mark Musonda Webster Shawa

This thesis discusses the prospect of finding the gravitational dual to the strongly coupled conformal fluids, with a special interest in the quark-gluon plasma. Such a task can be achieved by matching certain physical observables of two apparently different theories that are dually related owing to the fact that the same string theory can be viewed in two different ways. This is particularly useful when one of the theories is intractable while its dual is manageable. We begin by postulating a particular type of gravitational theory from which we determine graviton scattering amplitudes in a special regime of high momentum. Using the gauge–gravity duality dictionary, the graviton scattering amplitudes can be mapped to stress-tensor correlation functions in the gauge theory. One of the outcomes of high-energy scattering experiments involving the quark-gluon plasma is stress-tensor correlator data. This thesis provides an algorithm for matching graviton scattering amplitudes with stress-tensor correlator data which, in principle, can be used to identify the gravitational dual to the quark-gluon plasma.

2016 ◽  
Vol 31 (28n29) ◽  
pp. 1645023 ◽  
Author(s):  
Dmitri E. Kharzeev

QCD possesses a compact gauge group, and this implies a non-trivial topological structure of the vacuum. In this contribution to the Gribov-85 Memorial volume, we first discuss the origin of Gribov copies and their interpretation in terms of fluctuating topology in the QCD vacuum. We then describe the recent work with E. Levin that links the confinement of gluons and color screening to the fluctuating topology, and discuss implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.


2010 ◽  
Vol 2010 ◽  
pp. 1-141 ◽  
Author(s):  
Felix Rust

We use the gauge/gravity duality to investigate various properties of strongly coupled gauge theories, which we interpret as models for the quark-gluon plasma (QGP). In particular, we use variants of the D3/D7 setup as an implementation of the top-down approach of connecting string theory with phenomenologically relevant gauge theories. We focus on the effects of finite temperature and finite density on fundamental matter in the holographic quark-gluon plasma, which we model as theN=2hypermultiplet in addition to theN=4gauge multiplet of supersymmetric Yang-Mills theory. We use a setup in which we can describe the holographic plasma at finite temperature and either baryon or isospin density and investigate the properties of the system from three different viewpoints. (i) We study meson spectra. Our observations at finite temperature and particle density are in qualitative agreement with phenomenological models and experimental observations. They agree with previous publications in the according limits. (ii) We study the temperature and density dependence of transport properties of fundamental matter in the QGP. In particular, we obtain diffusion coefficients. Furthermore, in a kinetic model we estimate the effects of the coupling strength on meson diffusion and therewith equilibration processes in the QGP. (iii) We observe the effects of finite temperature and density on the phase structure of fundamental matter in the holographic QGP. We trace out the phase transition lines of different phases in the phase diagram.


1993 ◽  
Vol 08 (40) ◽  
pp. 3853-3859 ◽  
Author(s):  
D. K. MAITY ◽  
P. K. BANERJEE ◽  
B. B. DAS ◽  
D. RAVINDRAN ◽  
D. K. BHATTACHARJEE

A study of intermittency in hadron-nucleus and the comparison with nucleus-nucleus interactions is presented. The power law behavior of the factorial moments and the variation of intermittency index with the center-of-mass energy are shown. Results favor the formation of quark-gluon plasma in preference to a cascade mechanism.


2015 ◽  
Vol 2015 ◽  
pp. 1-23 ◽  
Author(s):  
Li-Na Gao ◽  
Fu-Hu Liu

We propose a new revised Landau hydrodynamic model to study systematically the pseudorapidity distributions of charged particles produced in heavy ion collisions over an energy range from a few GeV to a few TeV per nucleon pair. The interacting system is divided into three sources, namely, the central, target, and projectile sources, respectively. The large central source is described by the Landau hydrodynamic model and further revised by the contributions of the small target/projectile sources. The modeling results are in agreement with the available experimental data at relativistic heavy ion collider, large hadron collider, and other energies for different centralities. The value of square speed of sound parameter in different collisions has been extracted by us from the widths of rapidity distributions. Our results show that, in heavy ion collisions at energies of the two colliders, the central source undergoes a phase transition from hadronic gas to quark-gluon plasma liquid phase; meanwhile, the target/projectile sources remain in the state of hadronic gas. The present work confirms that the quark-gluon plasma is of liquid type rather than being of a gas type.


2020 ◽  
Vol 2 ◽  
pp. 1
Author(s):  
N. G. Antoniou

Incorporating fractal geometry in the Regge-Mueller approach to strong interaction dynamics one may formulate a model for the one-dimensional critical sector of the hadronic 5-matrix in a high energy collision. A non conventional component of the correlation functions in rapidity space is obtained, the phenomenological implications of which are related with the intermittency effects in quark-gluon plasma physics.


2012 ◽  
Vol 21 (08) ◽  
pp. 1250069 ◽  
Author(s):  
K. ATAZADEH ◽  
A. M. GHEZELBASH ◽  
H. R. SEPANGI

In the standard picture of cosmology it is predicted that a phase transition, associated with chiral symmetry breaking after the electroweak transition, has occurred at approximately 10μ seconds after the Big Bang to convert a plasma of free quarks and gluons into hadrons. We consider the quark-hadron phase transition in a Dvali, Gabadadze and Porrati (DGP) brane world scenario within an effective model of QCD. We study the evolution of the physical quantities useful for the study of the early universe, namely, the energy density, temperature and the scale factor before, during and after the phase transition. Also, due to the high energy density in the early universe, we consider the quadratic energy density term that appears in the Friedmann equation. In DGP brane models such a term corresponds to the negative branch (ϵ = -1) of the Friedmann equation when the Hubble radius is much smaller than the crossover length in 4D and 5D regimes. We show that for different values of the cosmological constant on a brane, λ, phase transition occurs and results in decreasing the effective temperature of the quark-gluon plasma and of the hadronic fluid. We then consider the quark-hadron transition in the smooth crossover regime at high and low temperatures and show that such a transition occurs along with decreasing the effective temperature of the quark-gluon plasma during the process of the phase transition.


Sign in / Sign up

Export Citation Format

Share Document