scholarly journals Substantiation of methodical approaches to the control of indoor radon concentration in existing public buildings with non-round-the-clock stay of people

2021 ◽  
Vol 14 (3) ◽  
pp. 29-40
Author(s):  
A. S. Vasilyev ◽  
I. K. Romanovich ◽  
D. V. Kononenko ◽  
T. A. Kormanovskaya ◽  
K. A. Saprykin ◽  
...  

According to the analysis of requests for methodological assistance to the Saint-Petersburg Research In ­stitute of Radiation Hygiene after Professor P. V. Ramzaev, measurements of radon concentration (or radon EEC) in existing operated public buildings (primarily children institutions) in the framework of surveillance actions in the regions of the Russian Federation, as a rule, are taken according to Guidelines MU 2.6.1.2838-11, intended for radiation control of public buildings only when they are put into operation after construction, major repairs or reconstruction, due to the absence of special guidelines. Compliance with the requirements of paragraph 6.5 of MU 2.6.1.2838-11 means that the building and premises are in a state that is not equal to their normal operation mode. Registration of high values of indoor radon concentration in this case leads to management decisions, including administrative suspension o f activities for up to ninety days, i.e. the closure of individual premises or even the entire building of a children institution. The consequences of making such decisions may include an increase in social tension in society and provoking radiophobia among the population. The paper presents specific recommendations for the radon survey for existing operated public buildings with non-round-the-clock stay of people, which are based on the results of the analysis of the experience of practical application of various methods of measuring indoor radon concentrations in such buildings in order to assess average radon concentration during working hours in the normal operation mode. The proposed approach can be further used as the basis for developing special guidelines for radiation control of existing operated public buildings with non-round-the-clock stay of people. 

Nukleonika ◽  
2016 ◽  
Vol 61 (3) ◽  
pp. 333-336 ◽  
Author(s):  
Amin Shahrokhi ◽  
Erika Nagy ◽  
Anita Csordás ◽  
János Somlai ◽  
Tibor Kovács

Abstract Owing to the high potential of radon to increase the risk of lung cancer, health organizations are enforced to update their regulations and recommendations regarding indoor radon levels each year. In this study, the indoor radon concentrations of three randomly selected thermal baths in Hungary using CR-39 and an AlphaGUARD radon monitor were measured with regard to the new updated standards of the European Basic Safety Standard (EU BSS, Council Directive 2013/59/Euratom, 2014). The annual average of indoor radon concentrations in Parad Medical Bath, Igal Health Spa and Eger Turkish Bath were measured as 159 ± 19, 176 ± 27 and 301 ± 30 Bq/m3, respectively. Indoor radon concentration in all measurement locations were determined to be below the reference level, with the exception of the main pool, small pool and sparkling bath areas in the Eger Turkish Bath that were measured as 403 ± 42, 315 ± 32 and 354 ± 36 Bq/m3, respectively. In light of the results, the estimated annual average radon concentration in the thermal baths was below the EU BSS reference level of 300 Bq/m3. Personal dosimetry is required to estimate the annual effective dose from inhaled radon by the workers at the Eger Turkish Bath. This procedure is required in order to justify the application of the mitigation process of decreasing working hours, improving the ventilation rate or increasing the number of classified employees in response to the official radiation surveillance programme.


2019 ◽  
Vol 18 (2) ◽  
pp. 177-184 ◽  
Author(s):  
Min-jin Kim ◽  
Sang-su An ◽  
Min-cheol Cho ◽  
Se-il Park ◽  
Jong-min Kim ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. Dicu ◽  
B. D. Burghele ◽  
M. Botoş ◽  
A. Cucoș ◽  
G. Dobrei ◽  
...  

AbstractThe present study aims to identify novel means of increasing the accuracy of the estimated annual indoor radon concentration based on the application of temporal correction factors to short-term radon measurements. The necessity of accurate and more reliable temporal correction factors is in high demand, in the present age of speed. In this sense, radon measurements were continuously carried out, using a newly developed smart device accompanied by CR-39 detectors, for one full year, in 71 residential buildings located in 5 Romanian cities. The coefficient of variation for the temporal correction factors calculated for combinations between the start month and the duration of the measurement presented a low value (less than 10%) for measurements longer than 7 months, while a variability close to 20% can be reached by measurements of up to 4 months. Results obtained by generalized estimating equations indicate that average temporal correction factors are positively associated with CO2 ratio, as well as the interaction between this parameter and the month in which the measurement took place. The impact of the indoor-outdoor temperature differences was statistically insignificant. The obtained results could represent a reference point in the elaboration of new strategies for calculating the temporal correction factors and, consequently, the reduction of the uncertainties related to the estimation of the annual indoor radon concentration.


2006 ◽  
Vol 119 (1-4) ◽  
pp. 434-437 ◽  
Author(s):  
M. S. K. Khokhar ◽  
R. S. Kher ◽  
V. B. Rathore ◽  
T. V. Ramachandran

2018 ◽  
Vol 53 (3) ◽  
pp. 199-206 ◽  
Author(s):  
F. Otoo ◽  
E.O. Darko ◽  
M. Garavaglia ◽  
C. Giovani ◽  
S. Pividore ◽  
...  

Indoor radon concentration for annual, rainy and dry season have been studied in 228 buildings which includes bedroom, kitchen, sitting room, laboratories and offices in Accra metropolis of Greater Accra of Ghana. The passive radon CR-39 SSNTD was used for this study. The cumulative frequency distribution, normalizing Q-Q plots, Kolmogorov-Smirnov and Shapiro-Wilk statistical test showed that the result of both workplaces and dwellings are not normally distributed. The strong positive correlation between the two seasons occurred at 95% confidence level with 2 tailed. The rainy season recorded highest coefficient variation of r2 = 0.982. Statistical analysis of median (39.3), AM (103.4), GM (57.9) and GSD (3.2) for rainy season were greater than that of the dry season of median (26.9), AM (88.2), GM (49.2) and GSD (2.8) respectively. Rainy season was found to contain high radon concentrations than the dry season for all the studied locations. In general, workplace had radon concentration far greater than dwellings. The results obtained from this study ranged between 13.6 to 533.7 Bq/m3, out of which 9.6%, 12.7% and 3.5% were found to be greater than action levels proposed by WHO, EC and ICRP.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 92
Author(s):  
Joan Frédéric Rey ◽  
Stéphane Goyette ◽  
Mauro Gandolla ◽  
Martha Palacios ◽  
Fabio Barazza ◽  
...  

Radon is a natural and radioactive gas that can accumulate in indoor environments. Indoor radon concentration (IRC) is influenced, among other factors, by meteorology, which is the subject of this paper. Weather parameters impact indoor radon levels and have already been investigated, but rarely in Switzerland. Moreover, there is a strong need for a better understanding of the radon behaviour inside buildings in Switzerland for public health concerns as Switzerland is a radon prone area. Based on long-term, continuous, and hourly radon measurements, radon distributions classified according to different weather event definitions were investigated and then compared at three different study sites in Western Switzerland. Outdoor temperature influences the most indoor radon, and it is globally anti-correlated. Wind influences indoor radon, but it strongly depends on intensity, direction, and building characteristics. Precipitation influences periodically indoor radon levels relatively to their intensity. Atmospheric pressure and relative humidity do not seem to be huge determinants on IRC. Our results are in line with previous findings and provide a vivid example in Western Switzerland. This paper underlines the different influence complexities of radon, and the need to communicate about it within the broader public and with construction professionals, to raise awareness.


2004 ◽  
Vol 19 (1) ◽  
pp. 46-49 ◽  
Author(s):  
Asiye Ulug ◽  
Melek Karabulut ◽  
Nilgün Celebi

Indoor radon concentration levels at three sites in Turkey were measured using CR-39 solid state nuclear track detectors. The annual mean of radon concentration was estimated on the basis of four quarter measurements at specific locations in Turkey. The measuring sites are on the active faults. The results of radon measurements are based on 280 measurements in doors. The annual arithmetic means of radon concentrations at three sites (Isparta Egirdir, and Yalvac) were found to be 164 Bqm?3, 124 Bqm?3, and 112 Bqm?3 respectively, ranging from 78 Bqm?3 to 279 Bqm?3. The in door radon concentrations were investigated with respect to the ventilation conditions and the age of buildings. The ventilation conditions were determined to be the main factor affecting the in door radon concentrations. The in door radon concentrations in the new buildings were higher than ones found in the old buildings.


2020 ◽  
Vol 35 (4) ◽  
pp. 339-346
Author(s):  
Mehmet Erdogan ◽  
Murat Abaka ◽  
Kaan Manisa ◽  
Hasan Bircan ◽  
Coskun Kus ◽  
...  

Indoor radon activity concentrations and radon doses on the ground floor and basement floor of 19 schools (kindergardens, primary schools, secondary schools, and high schools) and thermal spas of Ilgin district in Konya, have been measured using the AlphaGUARD PQ 2000PRO radon detector, for three days in the first half of 2016. According to the results, while the indoor radon concentration for only one location, in total, is above the Turkish action level of 400 Bqm?3, the values for 10 locations are above the reference level of 100 Bqm?3, recommended by WHO. The calculated annual effective doses for inhalation of the radon in indoor air were also found to be 0.26 ?Sv for the minimum and 4.36 ?Sv for the maximum. The parametric distribution analysis is also performed with 3-parameter Weibull distribution and some remarks are provided on radon concentration activity.


2021 ◽  
Vol 14 (4) ◽  
pp. 309-316

Abstract: The aim of the current study was to measure indoor radon concentration levels and its resulting doses received by the students and staff in schools of the directorate of education in the north of Hebron region- Palestine, during the summer months from June to September (2018), using CR-39 detectors. In this study, a total of 567 CR-39-based radon detectors were installed in the selected schools. The average radon concentrations were found to be 90.0, 66.5 and 58.0 Bqm-3 in Halhul, Beit Umar and Alarrub camp schools, respectively. Based on the measured indoor radon data, the overall average effective dose for the studied area was found to be 0.31 mSvy-1. Reported values for radon concentrations and corresponding doses are lower than ICRP recommended limits for workplaces. The results show no significant radiological risk for the pupils and staff in the schools under investigation. Consequently, the health hazards related to radiation are expected to be negligible. Keywords: Radon concentration, Alpha particles, Annual effective dose, Schools. PACs: 29.40.−n.


Sign in / Sign up

Export Citation Format

Share Document