Environmental Technologies to Treat Rare Earth Elements Pollution: Principles and Engineering

2022 ◽  

Rare earth elements (REE) have applications in various modern technologies, e.g., semiconductors, mobile phones, magnets. They are categorized as critical raw materials due to their strategic importance in economies and high risks associated with their supply chain. Therefore, more sustainable practices for efficient extraction and recovery of REE from secondary sources are being developed. This book, Environmental Technologies to Treat Rare Earth Elements Pollution: Principles and Engineering: presents the fundamentals of the (bio)geochemical cycles of rare earth elements and which imbalances in these cycles result in pollution.overviews physical, chemical and biological technologies for successful treatment of water, air, soils and sediments contaminated with different rare earth elements.explores the recovery of value-added products from waste streams laden with rare earth elements, including nanoparticles and quantum dots. This book is suited for teaching and research purposes as well as professional reference for those working on rare earth elements. In addition, the information provided in this book is helpful to scientists, researchers and practitioners in related fields, such as those working on metal/metalloid microbe interaction and sustainable green approaches for resource recovery from wastes. ISBN: 9781789062229 (Paperback) ISBN: 9781789062236 (eBook) ISBN: 9781789062243 (ePUB)

2019 ◽  
Vol 108 ◽  
pp. 02011
Author(s):  
Karolina Kossakowska ◽  
Katarzyna Grzesik

Rare Earth Elements (REEs) are identified as critical raw materials for the European Union economy. REEs are not currently produced in the EU, while there are several sources not properly addressed. Within the ENVIREE project tailings from New Kankberg (Sweden) and Covas (Portugal) were identified as rich in REEs and chosen for recovery processing. The Life Cycle Assessment (LCA) methodology was used to evaluate the environmental impact of REEs recovery. The aim of this study is the detailed analysis of several scenarios with different electricity production schemes of REE recovery. The study discusses the share of energy use in the overall impact on the environment, taking into account diversification in the electricity production structure among EU countries. The energy use is a significant contributor to the overall environmental impact of studied cases. Its share in the total environmental burden is reaching up to 47%. The results show that applying the average electricity scheme production for Europe may lead to biased LCA results. For the accurate LCA results the local production schemes of energy for certain countries should be chosen.


Author(s):  
Kathryn M. Goodenough ◽  
Eimear A. Deady ◽  
Charles D. Beard ◽  
Sam Broom-Fendley ◽  
Holly A. L. Elliott ◽  
...  

AbstractThe rare earth elements (REE) are critical raw materials for much of modern technology, particularly renewable energy infrastructure and electric vehicles that are vital for the energy transition. Many of the world’s largest REE deposits occur in alkaline rocks and carbonatites, which are found in intracontinental, rift-related settings, and also in syn- to post-collisional settings. Post-collisional settings host significant REE deposits, such as those of the Mianning-Dechang belt in China. This paper reviews REE mineralisation in syn- to post-collisional alkaline-carbonatite complexes worldwide, in order to demonstrate some of the key physical and chemical features of these deposits. We use three examples, in Scotland, Namibia, and Turkey, to illustrate the structure of these systems. We review published geochemical data and use these to build up a broad model for the REE mineral system in post-collisional alkaline-carbonatite complexes. It is evident that immiscibility of carbonate-rich magmas and fluids plays an important part in generating mineralisation in these settings, with REE, Ba and F partitioning into the carbonate-rich phase. The most significant REE mineralisation in post-collisional alkaline-carbonatite complexes occurs in shallow-level, carbothermal or carbonatite intrusions, but deeper carbonatite bodies and associated alteration zones may also have REE enrichment.


2017 ◽  
Vol 92 (10) ◽  
pp. 2683-2690 ◽  
Author(s):  
Éva Ujaczki ◽  
Yannick Zimmermann ◽  
Christoph Gasser ◽  
Mónika Molnár ◽  
Viktória Feigl ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 352
Author(s):  
Karol Zglinicki ◽  
Krzysztof Szamałek ◽  
Stanisław Wołkowicz

The growing demand for critical raw materials (rare earth elements—REE, Nb, Ta, and others) enforces a need to look for their alternative sources. Distortions of the mineral supply chain caused by COVID-19 have necessitated a re-evaluation of what exists as mining waste from previous exploitation. Consequently, this study aims to provide an inventory of raw materials on the Indonesian Tin Islands (Bangka and Belitung). Geological and mineralogical examinations on Bangka have permitted an economic appraisal of tailings from the processing of cassiterite-bearing sands and confirmed the presence of REE-bearing minerals, chiefly monazite and xenotime, zircon, ilmenite, rutile, niobium-tantalum phases. In general, the mineral content of the tailings varies depending on the sampling site and the type of processing used during ore-production. ICP-MS (inductively coupled plasma–mass spectrometers) analyses revealed anomalous concentrations of LREE (light rare earth elements): La > 5%, Ce > 5%, Pr > 1%, Nd > 1%, Sm > 1% and HREE+Y (heavy rare earth elements and yttrium) up to 2.51 wt%. High values have been found for the “most critical” metals of the HREE group: Dy (up to 0.34 wt%), Tb (up to 0.08 wt%), Eu (up to 61.8 ppm), Nd (>1.0 wt%), and Y (up to 1.20 wt%). In addition, the following contents have been defined: Ga (to 0.03 wt%); Hf (to 0.64 wt%); Ta (to 0.08 wt%); Nb (to 0.23 wt%); W (to 0.14 wt%); Zr (>5.0 wt%); and Sc (to 0.01 wt%). Such high concentrations suggest the tailing dumps to be a potential new source of “critical raw materials”.


Author(s):  
Dominika Fila

Rare earth metals are a group of elements widely used in high technology products. They are included in the group of critical mineral resources for the EU economy. Rare earth elements are found in computers and mobile phones, as well as in low-emission energy technologies. They are also applied in chemical processes as catalysts in the oil refining. Some of them occur even in considerable quantities in the earth's crust but not very often in the concentrations justifying the profitability of their extraction. Additionally, the constantly growing demand and the current market situation cause that alternative resources of rare earth elements recovery are sought after. Therefore, the recovery and separation methods as well as recovery from the secondary sources are becoming more and more important. The following paper presents the possibilities of recovery and separation of rare earth elements from primary and secondary sources.


2021 ◽  
Vol 63 (4) ◽  
pp. 477-483
Author(s):  
D. A. Elatontsev ◽  
A. P. Mukhachev ◽  
Yu. F. Korovin ◽  
N. D. Voloshin

2020 ◽  
Vol 6 (41) ◽  
pp. eabb6570 ◽  
Author(s):  
Michael Anenburg ◽  
John A. Mavrogenes ◽  
Corinne Frigo ◽  
Frances Wall

Carbonatites and associated rocks are the main source of rare earth elements (REEs), metals essential to modern technologies. REE mineralization occurs in hydrothermal assemblages within or near carbonatites, suggesting aqueous transport of REE. We conducted experiments from 1200°C and 1.5 GPa to 200°C and 0.2 GPa using light (La) and heavy (Dy) REE, crystallizing fluorapatite intergrown with calcite through dolomite to ankerite. All experiments contained solutions with anions previously thought to mobilize REE (chloride, fluoride, and carbonate), but REEs were extensively soluble only when alkalis were present. Dysprosium was more soluble than lanthanum when alkali complexed. Addition of silica either traps REE in early crystallizing apatite or negates solubility increases by immobilizing alkalis in silicates. Anionic species such as halogens and carbonates are not sufficient for REE mobility. Additional complexing with alkalis is required for substantial REE transport in and around carbonatites as a precursor for economic grade-mineralization.


Sign in / Sign up

Export Citation Format

Share Document