Effluent nutrient management and resource recovery in intensive rural industries for the protection of natural waters

1999 ◽  
Vol 40 (2) ◽  
pp. 19-27 ◽  
Author(s):  
T. K. Biswas ◽  
F. R. Higginson ◽  
I. Shannon

Intensive rural industry is developing rapidly in parts of inland Australia. The usually nutrient and salt rich effluent from these sources has traditionally been disposed to both land and water bodies. Since direct water discharge is no longer permitted, a challenge now exists when applying effluent to land especially where the rate of application exceeds crop requirements. Effluent of high volume and concentration of nutrients and/or salts can easily contaminate land and water resources. Predicting the optimum rate of land application of effluent is complicated by the physical, chemical and biological properties of soils. This paper addresses the characteristics of effluents from various intensive rural industries and their potential environmental impacts when irrigated to agricultural land in New South Wales, Australia. To assess the environmental sustainability of effluent reuse in land application, a mathematical model (ERIM) has been developed based on a monthly water balance. ERIM includes historical rainfall and evaporation; the amount of nitrogen and phosphorus introduced; their yearly removal by plants to be grown; amount of applied organic matter; and water holding capacity of soil.

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1064
Author(s):  
Shuiwang Duan ◽  
Kamaljit Banger ◽  
Gurpal S. Toor

Florida has a long history of phosphate-mining, but less is known about how mining affects nutrient exports to coastal waters. Here, we investigated the transport of inorganic and organic forms of nitrogen (N) and phosphorus (P) over 23 sampling events during a wet season (June–September) in primary tributaries and mainstem of Alafia River that drains into the Tampa Bay Estuary. Results showed that a tributary draining the largest phosphate-mining area (South Prong) had less flashy peaks, and nutrients were more evenly exported relative to an adjacent tributary (North Prong), highlighting the effectiveness of the mining reclamation on stream hydrology. Tributaries draining > 10% phosphate-mining area had significantly higher specific conductance (SC), pH, dissolved reactive P (DRP), and total P (TP) than tributaries without phosphate-mining. Further, mean SC, pH, and particulate reactive P were positively correlated with the percent phosphate-mining area. As phosphate-mining occurred in the upper part of the watershed, the SC, pH, DRP, and TP concentrations increased downstream along the mainstem. For example, the upper watershed contributed 91% of TP compared to 59% water discharge to the Alafia River. In contrast to P, the highest concentrations of total N (TN), especially nitrate + nitrite (NOx–N) occurred in agricultural tributaries, where the mean NOx–N was positively correlated with the percent agricultural land. Dissolved organic N was dominant in all streamwaters and showed minor variability across sites. As a result of N depletion and P enrichment, the phosphate-mining tributaries had significantly lower molar ratios of TN:TP and NOx–N:DRP than other tributaries. Bi-weekly monitoring data showed consistent increases in SC and DRP and a decrease in NOx–N at the South Prong tributary (highest phosphate-mining area) throughout the wet season, and different responses of dissolved inorganic nutrients (negative) and particulate nutrients (positive) to water discharge. We conclude that (1) watersheds with active and reclaimed phosphate-mining and agriculture lands are important sources of streamwater P and N, respectively, and (2) elevated P inputs from the phosphate-mining areas altered the N:P ratios in streamwaters of the Alafia River.


2021 ◽  
Author(s):  
◽  
Maggie Rogers

<p>This research focuses on the prominent issue of degraded water quality in New Zealand caused by the intensification of agricultural land use, resulting in increased levels of diffuse pollutants such as sediment, nitrogen and phosphorus in waterways (Duncan, 2017). Degraded water quality is a critical issue that needs to be addressed both socially and scientifically. It needs to be addressed socially as human behaviour is influencing this degradation, and the science is needed to further our understanding and implementation of the best mitigation solutions.  The aim of this study was to evaluate how information surrounding potential nutrient mitigation measures provided by decision support tools is understood and interpreted by farmers facing tightening environmental regulations and a changing social outlook on environmental sustainability. To achieve this aim, the following activities were conducted: (i) A review of current theories and tools available to understand and encourage pro-environmental behaviour. (ii) A case study using the Land Utilisation Capability Indicator (LUCI) model to determine stakeholder engagement was carried out through interviews with 6 farmers in the Mangatarere Catchment.  The review showed that while information alone does not drive behaviour change, it is an essential component that when used in collaboration with other methods and incentives, can be very successful (Kennedy, 2010; Mackenzie-Mohr, 2000; Stern, 2000). From this review a method that was identified as having huge potential in terms of managing water quality was the use of land use models alongside targeted on-farm advice (Bouraoui & Grizzetti, 2014).  To understand the stakeholder perception and uptake of the information this method provides a case study was carried out using the LUCI model with 6 farmers in the Mangatarere Catchment. The results showed that LUCI proved to be a valuable tool for both the case study farmers and the wider farming community. Farmer feedback highlighted the importance of ensuring that information provided by such tools is communicated in a consolidated manner. This thesis shows that land use models such as LUCI have the potential to be a beneficial method of engaging stakeholders in prominent issues such as degrading water quality.</p>


2021 ◽  
Author(s):  
◽  
Maggie Rogers

<p>This research focuses on the prominent issue of degraded water quality in New Zealand caused by the intensification of agricultural land use, resulting in increased levels of diffuse pollutants such as sediment, nitrogen and phosphorus in waterways (Duncan, 2017). Degraded water quality is a critical issue that needs to be addressed both socially and scientifically. It needs to be addressed socially as human behaviour is influencing this degradation, and the science is needed to further our understanding and implementation of the best mitigation solutions.  The aim of this study was to evaluate how information surrounding potential nutrient mitigation measures provided by decision support tools is understood and interpreted by farmers facing tightening environmental regulations and a changing social outlook on environmental sustainability. To achieve this aim, the following activities were conducted: (i) A review of current theories and tools available to understand and encourage pro-environmental behaviour. (ii) A case study using the Land Utilisation Capability Indicator (LUCI) model to determine stakeholder engagement was carried out through interviews with 6 farmers in the Mangatarere Catchment.  The review showed that while information alone does not drive behaviour change, it is an essential component that when used in collaboration with other methods and incentives, can be very successful (Kennedy, 2010; Mackenzie-Mohr, 2000; Stern, 2000). From this review a method that was identified as having huge potential in terms of managing water quality was the use of land use models alongside targeted on-farm advice (Bouraoui & Grizzetti, 2014).  To understand the stakeholder perception and uptake of the information this method provides a case study was carried out using the LUCI model with 6 farmers in the Mangatarere Catchment. The results showed that LUCI proved to be a valuable tool for both the case study farmers and the wider farming community. Farmer feedback highlighted the importance of ensuring that information provided by such tools is communicated in a consolidated manner. This thesis shows that land use models such as LUCI have the potential to be a beneficial method of engaging stakeholders in prominent issues such as degrading water quality.</p>


2013 ◽  
Vol 295-298 ◽  
pp. 1005-1012
Author(s):  
Nora Aini Ali ◽  
Latifah Ghani ◽  
Noor Zalina Mahmood

The Material Flow Analysis (MFA) method is often discussed in terms of water resources management. This paper attempts to measure and analyze the flow of nitrogen and phosphorus from wastewater sources to assess the trends and patterns of strain in environmental metabolism.Comparison between nitrogen and phosphorus accumulates in wastewater shows that, P discharged values to sewer system are lower as compared to N. Kemaman dan Kuala Terengganu are the dominant region that generating high volume of P and N-wastewater discharge.The study also delved mostly into recycling level of effluent and sludge, with only 3 to 5% of both products were reuse for agriculture and economic purpose. In conclusion, MFA techniques have been proposed to help the decision-makers in waste and nutrient management planning especially on implementing policies related to water and wastewater sectors.


2021 ◽  
Vol 13 (10) ◽  
pp. 5612
Author(s):  
Shu-Yuan Pan ◽  
Cheng-Di Dong ◽  
Jenn-Feng Su ◽  
Po-Yen Wang ◽  
Chiu-Wen Chen ◽  
...  

Biochar is a carbon-rich material prepared from the pyrolysis of biomass under various conditions. Recently, biochar drew great attention due to its promising potential in climate change mitigation, soil amendment, and environmental control. Obviously, biochar can be a beneficial soil amendment in several ways including preventing nutrients loss due to leaching, increasing N and P mineralization, and enabling the microbial mediation of N2O and CO2 emissions. However, there are also conflicting reports on biochar effects, such as water logging and weathering induced change of surface properties that ultimately affects microbial growth and soil fertility. Despite the voluminous reports on soil and biochar properties, few studies have systematically addressed the effects of biochar on the sequestration of carbon, nitrogen, and phosphorus in soils. Information on microbially-mediated transformation of carbon (C), nitrogen (N), and phosphorus (P) species in the soil environment remains relatively uncertain. A systematic documentation of how biochar influences the fate and transport of carbon, phosphorus, and nitrogen in soil is crucial to promoting biochar applications toward environmental sustainability. This report first provides an overview on the adsorption of carbon, phosphorus, and nitrogen species on biochar, particularly in soil systems. Then, the biochar-mediated transformation of organic species, and the transport of carbon, nitrogen, and phosphorus in soil systems are discussed. This review also reports on the weathering process of biochar and implications in the soil environment. Lastly, the current knowledge gaps and priority research directions for the biochar-amended systems in the future are assessed. This review focuses on literatures published in the past decade (2009–2021) on the adsorption, degradation, transport, weathering, and transformation of C, N, and P species in soil systems with respect to biochar applications.


2020 ◽  
Vol 10 (24) ◽  
pp. 8953
Author(s):  
Toby Adjuik ◽  
Abbey M. Rodjom ◽  
Kimberley E. Miller ◽  
M. Toufiq M. Reza ◽  
Sarah C. Davis

Miscanthus x giganteus (miscanthus), a perennial biomass crop, allocates more carbon belowground and typically has lower soil greenhouse gas (GHG) emissions than conventional feedstock crops, but best practices for nutrient management that maximize yield while minimizing soil GHG emissions are still debated. This study evaluated the effects of four different fertilization treatments (digestate from a biodigester, synthetic fertilizer (urea), hydrochar from the hydrothermal carbonization of digestate, and a control) on soil GHG emissions and biomass yield of an established miscanthus stand grown on abandoned agricultural land. Soil GHG fluxes (including CH4, CO2, and N2O) were sampled in all treatments using the static chamber methodology. Average biomass yield varied from 20.2 Mg ha−1 to 23.5 Mg ha−1, but there were no significant differences among the four treatments (p > 0.05). The hydrochar treatment reduced mean CO2 emissions by 34% compared to the control treatment, but this difference was only statistically significant in one of the two sites tested. Applying digestate to miscanthus resulted in a CH4 efflux from the soil in one of two sites, while soils treated with urea and hydrochar acted as CH4 sinks in both sites. Overall, fertilization did not significantly improve biomass yield, but hydrochar as a soil amendment has potential for reducing soil GHG fluxes.


2005 ◽  
Vol 85 (1) ◽  
pp. 81-93 ◽  
Author(s):  
C. A. Campbell ◽  
R. P. Zentner ◽  
F. Selles ◽  
P. G. Jefferson ◽  
B. G. McConkey ◽  
...  

Assessment of the long-term impact of fertilizers and other management factors on crop production and environmental sustainability of cropping systems in the semi-arid Canadian prairies is needed. This paper discusses the long-term influence of N and P fertilizers on crop production, N uptake and water use of hard red spring wheat (Triticum aestivum L.), and the effect of the preceding crop type [flax (Linum usitatissimum L.) and fall rye (Secale cereale L.)] on wheat grown on a medium-textured, Orthic Brown Chernozem at Swift Current, Saskatchewan. We analysed 36 yr of results (1967–2002) from eight crop rotation-fertility treatments: viz., fallow-wheat receiving N and P (F-W, N + P), three F-W-W treatments fertilized with (i) N + P, (ii) P only, and (iii) N only; two other 3-yr mixed rotations with N + P (i) F-flax-W (F-Flx-W) and (ii) F-fall rye-W (F-Rye-W); and two continuous wheat rotations (Cont W), one receiving N + P and the other only P. Growing season weather conditions during the 36-yr period were near the long-term mean, but the first 22 yr were generally drier than normal while the last 14 yr (1989–2002) had average to above-average growing conditions. This was partly responsible for grain and N yield being greater in the latter period than in the first 22 yr. The 36-yr average response of wheat grown on fallow to P fertilizer was 339 kg ha-1, while the response to N fertilizer over this period was only 123 kg ha-1. The 36-yr average response of wheat grown on stubble to N was 344 kg ha-1 for F-W-(W) and 393 kg ha-1 for Cont W. Neither flax nor fall rye influenced the yield response of the following wheat crops. Annualized grain production for F-W (N + P), F-W-W (+ N) and F-W-W (+ P) rotations were similar (1130 kg ha-1 yr-1); this was about 15% lower than for F-W-W (N + P), 40% lower than for Cont W (N + P), and 5% lower than for Cont W (+ P). Annualized aboveground N yield for Cont W (N + P) was 57% higher than for Cont W (+ P). Regressions were developed relating straw to grain yields for wheat, flax and fall rye. The amount of NO3-N left in the soil was directly related to amount of N applied and inversely to N removed in the crop. Thus, F-(W)-W (+ N) left about 28% more NO3-N in the rooting zone than F-(W)-W (N + P), while F-W-(W) (N + P) left 20% more than F-W-(W) (+ P), and Cont W (N + P) left 39% more than Cont W (+ P). F-Rye-W (N + P) left much less NO3-N in the soil than any other fallow-containing system and similar amounts to Cont W (N + P). Key words: Yields, grain protein, N and P fertilizer, straw/grain regressions, water use, soil nitrate


2014 ◽  
Vol 18 (6) ◽  
pp. 2191-2200 ◽  
Author(s):  
S. T. Harrington ◽  
J. R. Harrington

Abstract. The objective of this research was to investigate the relationship between water and sediment discharge on the transport of nutrients: nitrogen and phosphorus. Water discharge, suspended sediment concentration and dissolved and particulate forms of nitrogen and phosphorus were monitored on the 105 km2 River Owenabue catchment in Ireland. Water discharge was found to have an influence on both particulate and dissolved nutrient transport, but more so for particulate nutrients. The particulate portion of N and P in collected samples was found to be 24 and 39%, respectively. Increased particulate nitrogen concentrations were found at the onset of high discharge events, but did not correlate well to discharge. High concentrations of phosphorus were associated with increased discharge rates and the coefficient of determination (r2) between most forms of phosphorus and both discharge and suspended sediment concentrations were observed to be greater than 0.5. The mean TN yield is 4004 kg km−2 yr−1 for the full 29-month monitoring period with a mean PN yield of 982 kg km−2 yr−1, 25% of the TN yield with the contribution to the yield of PN and PP estimated to be 25 and 53% respectively. These yields represent a PN and PP contribution to the suspended sediment load of 5.6 and 0.28% respectively for the monitoring period. While total nitrogen and total phosphorus levels were similar to other European catchments, levels of bio-available phosphorus were elevated indicating a potential risk of eutrophication within the river.


TAPPI Journal ◽  
2021 ◽  
Vol 20 (2) ◽  
pp. 111-120
Author(s):  
ILICH LAMA ◽  
DEREK SAIN

Several regulatory agencies and universities have published guidelines addressing the use of wood ash as liming material for agricultural land and as a soil amendment and fertilizer. This paper summarizes the experiences collected from several forest products facility-sponsored agricultural application programs across North America. These case studies are characterized in terms of the quality of the wood ash involved in the agricultural application, approval requirements, recommended management practices, agricultural benefits of wood ash, and challenges confronted by ash generators and farmers during storage, handling, and land application of wood ash. Reported benefits associated with land-applying wood ash include increasing the pH of acidic soils, improving soil quality, and increasing crop yields. Farmers apply wood ash on their land because in addition to its liming value, it has been shown to effectively fertilize the soil while maintaining soil pH at a level that is optimal for plant growth. Given the content of calcium, potassium, and magnesium that wood ash supplies to the soil, wood ash also improves soil tilth. Wood ash has also proven to be a cost-effective alternative to agricultural lime, especially in rural areas where access to commercial agricultural lime is limited. Some of the challenges identified in the review of case studies include lengthy application approvals in some jurisdictions; weather-related issues associated with delivery, storage, and application of wood ash; maintaining consistent ash quality; inaccurate assessment of required ash testing; potential increased equipment maintenance; and misconceptions on the part of some farmers and government agencies regarding the effect and efficacy of wood ash on soil quality and crop productivity.


Sign in / Sign up

Export Citation Format

Share Document