Degradation of 4-chlorophenol by the anodic–cathodic cooperative effect with a Pd/MWNT gas-diffusion electrode

2012 ◽  
Vol 65 (11) ◽  
pp. 2010-2015 ◽  
Author(s):  
H. Wang ◽  
X. J. Wei ◽  
Z. Y. Bian

Pd/multi-walled carbon nanotubes (MWNTs) catalyst used for the gas-diffusion electrode was prepared by ethylene glycol (EG) reduction and characterized by the X-ray diffraction (XRD) and scanning electron microscope (SEM). The results indicated that Pd particles with an average size of 8.0 nm were highly dispersed in the MWNTs with amorphous structure. In a diaphragm electrolysis system with a Ti/RuO2/IrO2 anode and the Pd/MWNT gas diffusion cathode, the degradation of 4-chlorophenol was performed by a combination of electrochemical reduction and oxidation. The combined process was in favor of improving 4-chlorophenol degradation efficiency. The optimum reaction conditions were as following: initial pH 7, aeration with hydrogen and air. Under the optimized electrolysis conditions the removal of 4-chlorophenol in the anodic and cathodic compartments were 98.5 and 90.5%, respectively. Additionally, based on the analysis of electrolysis intermediates using high performance liquid chromatography (HPLC) and ion chromatography (IC), the electrolysis degradation of 4-chlorophenol was proposed containing the intermediates, such as phenol, hydroquinone, benzoquinone, maleic acid, fumaric acid, succinic acid, malonic acid, oxalic acid, acetic acid and formic acid.

2009 ◽  
Vol 59 (9) ◽  
pp. 1759-1767 ◽  
Author(s):  
H. Wang ◽  
J. L. Wang

Pd/C catalyst was prepared by a hydrogen reduction method and used for making a Pd/C gas-diffusion electrode. It was fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). In the catalyst, Pd particles with an average size of 4.0 nm were highly dispersed in the activated carbon with an amorphous structure; Pd content on the surface of the Pd/C catalyst reached 1.3 at% (atomic concentration). The Pd/C gas-diffusion electrode was then used as the cathode to investigate the electrochemical degradation of pentachlorophenol (PCP) in a diaphragm electrolysis device, feeding firstly with hydrogen gas then with air, compared with the carbon/polytetrafluoroethylene (C/PTFE) gas-diffusion cathode. The Pd/C gas-diffusion cathode can not only reductively dechlorinate PCP by feeding hydrogen gas, but also accelerate the two-electron reduction of O2 to hydrogen peroxide (H2O2) by feeding air. Therefore, both the removal efficiency and the dechlorination degree of PCP exceeded 80% after 100 min, and the average removal efficiency of PCP in terms of total organic carbon (TOC) was more than 75% after 200 min by using Pd/C gas-diffusion cathode, which was better than that of the C/PTFE gas-diffusion cathode. Phenol was identified as the dechorination product using high-performance liquid chromatography (HPLC).


2021 ◽  
Vol 21 (11) ◽  
pp. 5592-5602
Author(s):  
Samira Almasi ◽  
Ali Mohammad Rashidi

The effect of the yttria-stabilized zirconia (YSZ) nanoparticle loading in an electro-less bath was considered as one of the vital synthesis variables for control Ni content and microstructure of prepared nanocomposite particles, which are two crucial factors to achieving high-performance SOFC anode. Nanocomposite particles were prepared using a simple electroless method without any expensive pretreatment of sensitizing by Sn2+ ions as well as activating by Pd2+ ions that are usually used to apply nickel coating on the surface of a non-conductive substrate. The process was performed by adding YSZ nanoparticles into NaOH solution, separating them from the solution by the centrifugal method, then providing several water-based nanofluids with different concentrations of activated YSZ nanoparticles, mixing them with NiCI2 solution, followed by adding the hydrazine and then NaOH solution. X-ray diffraction and scanning electron microscopy coupled with energy dispersive X-ray analysis were used to analyze the prepared nanocomposite particles. It is observed that after adding YSZ nanoparticles into the NaOH solution, the pH of the solution varied gradually from a starting pH of 10.2 to 9. Also, by increasing the YSZ nanoparticles loading in the electroless bath from 76 mg/l to 126 mg/l, the grain size of Ni deposits, the Ni content and the average size of the prepared nanocomposite particles decreased. The electrochemical mechanism previously proposed for the nickel ion reduction was modified, and a novel analytical model was proposed for variation of the efficiency of Ni deposition with YSZ nanoparticles loading.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 604
Author(s):  
Anna-Marie Lauermannová ◽  
Ondřej Jankovský ◽  
Michal Lojka ◽  
Ivana Faltysová ◽  
Julie Slámová ◽  
...  

In this study, the combined effect of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (OMWCNTs) on material properties of the magnesium oxychloride (MOC) phase 5 was analyzed. The selected carbon-based nanoadditives were used in small content in order to obtain higher values of mechanical parameters and higher water resistance while maintaining acceptable price of the final composites. Two sets of samples containing either 0.1 wt. % or 0.2 wt. % of both nanoadditives were prepared, in addition to a set of reference samples without additives. Samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and energy dispersive spectroscopy, which were used to obtain the basic information on the phase and chemical composition, as well as the microstructure and morphology. Basic macro- and micro-structural parameters were studied in order to determine the effect of the nanoadditives on the open porosity, bulk and specific density. In addition, the mechanical, hygric and thermal parameters of the prepared nano-doped composites were acquired and compared to the reference sample. An enhancement of all the mentioned types of parameters was observed. This can be assigned to the drop in porosity when GO and OMWCNTs were used. This research shows a pathway of increasing the water resistance of MOC-based composites, which is an important step in the development of the new generation of construction materials.


Author(s):  
Yaofeng Wang ◽  
Fan Wang ◽  
Yang Kong ◽  
Lei Wang ◽  
Qinchuan Li

Abstract High-performance bioartificial muscles with low-cost, large bending deformation, low actuation voltage, and fast response time have drawn extensive attention as the development of human-friendly electronics in recent years. Here, we report a high-performance ionic bioartificial muscle based on the bacterial cellulose (BC)/ionic liquid (IL)/multi-walled carbon nanotubes (MWCNT) nanocomposite membrane and PEDOT:PSS electrode. The developed ionic actuator exhibits excellent electro-chemo-mechanical properties, which are ascribed to its high ionic conductivity, large specific capacitance, and ionically crosslinked structure resulting from the strong ionic interaction and physical crosslinking among BC, IL, and MWCNT. In particular, the proposed BC-IL-MWCNT (0.10 wt%) nanocomposite exhibited significant increments of Young's modulus up to 75% and specific capacitance up to 77%, leading to 2.5 times larger bending deformation than that of the BC-IL actuator. More interestingly, bioinspired applications containing artificial soft robotic finger and grapple robot were successfully demonstrated based on high-performance BC-IL-MWCNT actuator with excellent sensitivity and controllability. Thus, the newly proposed BC-IL-MWCNT bioartificial muscle will offer a viable pathway for developing next-generation artificial muscles, soft robotics, wearable electronic products, flexible tactile devices, and biomedical instruments.


Sign in / Sign up

Export Citation Format

Share Document