Catchment delineation and morphometric analysis using geographical information system

2015 ◽  
Vol 72 (7) ◽  
pp. 1168-1175 ◽  
Author(s):  
Manoj Kumar ◽  
Rohitashw Kumar ◽  
P. K. Singh ◽  
Manjeet Singh ◽  
K. K. Yadav ◽  
...  

The geographical information system (GIS) has emerged as an efficient tool in delineation of drainage patterns of watershed planning and management. The morphometric parameters of basins can address linear, areal and relief aspects. The study deals with the integrated watershed management of Baliya micro-watersheds, located in the Udaipur district of Rajasthan, India. Morphometric analysis in hydrological investigation is an important aspect and it is inevitable in the development and management of drainage basins. The determination of linear, areal and relief parameters indicate fairly good significance. The low value of the bifurcation ratio of 4.19 revealed that the drainage pattern has not been distorted by structural disturbance. The high value of the elongation ratio (0.68) compared to the circulatory ratio (0.27) indicates an elongated shape of the watershed. The high value of drainage density (5.39 km/km2) and stream frequency (12.32) shows that the region has impermeable subsoil material under poor vegetative cover with a low relief factor. The morphometric parameters of relief ratio (0.041) and relative relief (0.99%) show that the watershed can be treated using GIS techniques to determine the morphometric presence of dendritic drainage pattern, with a view to selecting the soil and water conservation measures and water harvesting.

Author(s):  
Rajnish Yadav ◽  
Mohammad Iqbal Bhat ◽  
Faisul-Ur- Rasool ◽  
Shabir Ahmed Bangroo ◽  
Roheela Ahmad ◽  
...  

Morphometric analysis is of vital importance in any hydrological research and is inevitable in development and management of watershed. Using the watershed as the main unit of morphometric characterization is the most logical choice, as well as geomorphological and hydrological processes take place within the drainage basin. A critical assessment and evaluation of morphometric parameters of Khag micro-watershed was accomplished through measurement of relief, linear and aerial aspects using Geographical Information System (GIS). The watershed boundaries, aspect, slope, digital elevation model (DEM), profile graph of topography, drainage order and drainage density mapswere generated for detailed study of micro-watershed using Shuttle Radar Topographic Mission (SRTM) data. The study area was designated as fourth order basin with the drainage area of 34.32 km2 and shows dendritic drainage pattern. The total length, drainage density and mean bifurcation ratio (Rb) were found to be 38.84 km, 1.13km/km2 and 1.73, respectively. The Khag micro-watershed showed the greater Rb value, which directs a strong structural control in the runoff pattern. A decrease in the stream frequency of flow was also observed with an increase in the order of flow. The shape parameters such as circulatory ratio, elongation ratio, length of over land flow, form factor and drainage texture of Khag micro-watershed were 0.42, 0.56, 0.43 km, 0.24 and 1.66, respectively. The Khag micro-watershed is elongated in shape and dendritic in drainage pattern. This can be attributed to the fact that the lithology and structural controls are more or less uniform. Relative relief and ruggedness number were 0.065 and 2.39 and are likely to subject the micro watershed to maximum soil erosion that demands, instantaneous soil conservation measure to be taken by watershed managers for its stability and sustainability. These studies area advantageous for the planning of rainwater harvesting and the management of the catchment area.


2018 ◽  
Vol 13 (1) ◽  
pp. 26
Author(s):  
Mudashiru R.B. ◽  
Salami A.W. ◽  
Bilewu S.O.

This paper presents the evaluation of methods of determination of peak runoff for an ungauged catchment. The present study made use of Geographical Information System (GIS) for the morphometric analysis of four sub-catchments within Jere sub-basin in Gurara Basin, Nigeria. Various morphometric parameters were computed and analyzed as sub-basin characteristics are important factors in determining the runoff. Three methods of peak runoff estimation were used to determine peak runoff of the study area for four return periods. The results of the peak runoff estimation based on rational method for the four sub-catchments for 25-year, 50-year, 75-year and 100-year return periods varied between 224m3/s and 1036m3/s, while the results for the SCS method varied between 105.3m3/s and 162.05m3/s and the results from the Cypress Creek method varied between 22.8m3/s and 86.55m3/s. The results obtained from the three methods showed that there are significant differences in the peak runoff results and also there are significant differences in the peak runoff results for the different return periods.


2020 ◽  
Vol 19 (2) ◽  
pp. 176
Author(s):  
Love Kumar ◽  
Dhiraj Khalkho ◽  
V.K. Pandey ◽  
Manish Kumar Sinha ◽  
Prashant Singh ◽  
...  

Agropedology ◽  
2019 ◽  
Vol 29 (1) ◽  
Author(s):  
A. P. Bowlekar ◽  

In present study Kansa watershed in Satara district of Maharashtra was characterized for watershed parameters. Geographical Information Systems (GIS) and a high-resolution Digital Elevation Model (DEM) has been utilized for the estimation of morphological parameters. Several morphometric parameters have been computed and analyzed viz. linear aspects such as stream order, stream number, stream length, mean stream length, stream length ratio; areal aspects such as drainage density, stream frequency, drainage texture, elongation ratio, circularity ratio, form factor, constant of channel maintenance; relief aspects such as relief, relief ratio, relative relief, ruggedness number, length of overland flow. Impacts of morphometric parameters on flash flood characteristics have also been investigated. The presence of the maximum number of the first order segments shows that the basin is subjected to erosion and also that some areas of the basin are characterized by variations in lithology and topography. The form factor is 0.21, and the circulatory ratio is 0.42, which suggests an elongated type of catchment. Elongation ratio is 0.52, which indicates that watershed has high relief and steep slope. The estimated catchment characteristics may be useful to stimulate hydrological responses of the catchment.


Sign in / Sign up

Export Citation Format

Share Document