scholarly journals The application of an efficient modified decolorizer in coagulation treatment of high color reclaimed water

2018 ◽  
Vol 77 (9) ◽  
pp. 2190-2203
Author(s):  
Mengqi Wang ◽  
Yimei Tian ◽  
Xin Zhao ◽  
Xiang Li

Abstract High color concentrations in inflows at reclaimed water treatment plants are typically considered as emergency situations, which must be solved using an appropriate decolorizing process. Using the decoloration mechanism of a modified dicyandiamide-formaldehyde polymer (DFP), a urea-formaldehyde polymer and a melamine-formaldehyde polymer (MFP) were prepared with ammonium chloride and ammonium sulfate as the modifiers. An orthogonal experiment indicated that a modified urea-formaldehyde polymer had no effect on decolorization; however, the MFP modified by ammonium chloride in number 16 (MMFP-C16), the DFP modified by ammonium chloride in number 9 (MDFP-C9) and modified by ammonium sulfate in number 6 (MDFP-S6) were successful. The removal rates were above 50% in acidic and reactive dye reclaimed water. Fourier transform infrared spectroscopy was used to microscopically analyze the differences in decolorization effect among the polymers. The effect of pH on decolorization was analyzed. Compared to the MDFP-C9 and MDFP-S6, the MMFP-C16 was not sensitive to changes in conditions. The pilot plant test proved that the three optimal decolorizers also had a good decolorizing effect, and MMFP-C16 was better both at decolorizing and floc sedimentation. Thus, the latter can be considered as an efficient modified decolorizer for rapid treatment of high color reclaimed water.

2011 ◽  
Vol 71-78 ◽  
pp. 3160-3164 ◽  
Author(s):  
Xiao Ying Liu ◽  
Ji Zhi Zhang ◽  
Yong Lin Yang ◽  
Shi Feng Zhang ◽  
Jian Zhang Li

The effect of melamine content in melamine modified urea formaldehyde (MUF) resin on durable properties of plywood was investigated using ammonium chloride (NH4Cl) with different melamine/urea (M/U) ratios. The plywood specimens were exposed to laboratory accelerated aging and/or cyclic soak-dry (SD). The experiment results indicated that the melamine contents in MUF resin showed an unobservable effect on the durable properties of MUF resin bonded plywood. The mechanical properties of plywood decreased more severely after accelerated aging test in acidic condition. However, the influence of different curing catalyst contents on mechanical properties and formaldehyde emission of UF resin can be minimized by adding melamine to the resin.


Author(s):  
Shanfeng Xu ◽  
Sanshan Xia ◽  
Yuzhu Chen ◽  
Hui Xiao ◽  
Maoyu Yi ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (40) ◽  
pp. 25010-25017
Author(s):  
Li Lu ◽  
Yan Wang ◽  
Tianhua Li ◽  
Supeng Wang ◽  
Shoulu Yang ◽  
...  

Reactions between CaCO3 and CH2O2 during polycondensation of UF resin produce Ca2+. Ionic bond complexation binds Ca2+ with UF resin. The UF resin crystalline percentage decreases from 26.86% to 22.71%. IB strength of resin bonded fiberboard increases from 0.75 to 0.94 MPa.


Author(s):  
Sudipta De ◽  
Mehrzad Kaiadi ◽  
Mohsen Assadi

Biomass cofiring in existing coal fired boilers has emerged as one of the most prospective technologies in order to address voluntary reduction of green house gases and other emissions, potential portfolio standards, customer service etc. within the context of deregulations. Pilot plant test results have confirmed the potential of biomass cofiring with coal for commercial use. However, being a new and developing technology, there is hardly any tool available for estimation of variation in performance of an existing coal fired boiler due to its retrofitting for biomass cofiring. A predicting tool is developed to estimate this performance variation using available information of pilot plant test results in literature or from data of plant operating with biomass. In order to incorporate future available information, this is developed in a flexible environment of Model Development Kit (MDK) of IPSEpro, a commercially available heat and mass balance program. Development of the models for this predicting tool as well as its limitations and possible future improvement has been discussed in this paper. Some results regarding estimation of change in efficiency, emissions and associated costs using this developed predicting tool has been presented.


Author(s):  
Yaoxin Liu ◽  
Libin Yang ◽  
Mengxiang Fang ◽  
Guanyi Chen ◽  
Zhongyang Luo ◽  
...  

A new system using combined coal gasification and combustion has been developed for clean and high efficient utilization of coal. Following are the processes. The coal is first partially gasified and the produced fuel gas is then used for industrial purpose or as a fuel for a gas turbine. The char residue from the gasifier is burned in a circulating fluidized bed combustor to generate steam for power generation. For having the experimental investigation, a 1MW pilot plant test facility has been erected. Experiments on coal partial gasification with air, and recycle gas have been made on the 1 MW pilot plant test facility. The results show that, with air as gasification agent, the system can produce 4–5MJ/Nm3 low heating value dry gas and fuel conversion efficiency attains 50–70% in the gasifier, and residue 20–40% converted in the combustor and total conversion efficiency in the system is over 90%. In the gasifier, the carbon conversion efficiency increases with the bed temperature and the air blown temperature. CaCO3 has an effective effect for sulfur removal in the gasifier. The sulfur removal efficiency attains 85% with Ca/S molar ratio 2.5. The system can produce 12–14MJ/Nm3 middle heating value day gas by using high temperature circulation solid as heat carrier and recycle gas or steam as gasification media, but the fuel conversion efficiency only attain 30–40% in the gasifier and most of fuel energy is converted in the combustor. CaCO3 has an obvious effect on tar cracking and H2S removal. The sulfur removal efficiency attains 80% with Ca/S molar ratio 2.5.


Sign in / Sign up

Export Citation Format

Share Document