scholarly journals Application of composite degradable modified starch-based flocculant on dewatering and recycling properties

2020 ◽  
Vol 82 (10) ◽  
pp. 2051-2061
Author(s):  
Jianbo Liu ◽  
Shouhao Jia ◽  
Liming Xu ◽  
Feifei Zhu ◽  
Shan Ren ◽  
...  

Abstract Sludge dewatering is an important step for wastewater treatment. Composite degradable flocculant (CDF) was prepared by cationic polyacrylamide (PAM) grafting onto modified starch with a novel initiator, and characterized by Fourier transform infrared spectroscopy. The microstructure of flocculated sludge was characterized by scanning electron microscopy. The study investigated the properties of CDF compared to PAM, which showed that the prepared CDF exhibited a highly effective flocculation on sludge dewatering, a higher transmittance and chemical oxygen demand removal rate, and a lower value of effluent ammonia nitrogen and total phosphorus. The fermentation process was also analyzed by testing the performance of dewatered sludge (temperature, pH, ammonia nitrogen, E4/E6 (humic acid absorbance at 465 nm (E4) and 665 nm (E6))). The dehydrated sludge with CDF could be easily compressed into cakes by belt-filter for easy transportation and storage. With the continuous addition of CDF and PAM, the corresponding index of capillary suction time (CST) increased. Moreover, the total value of CST with CDF was low, showing a good dewaterability. In addition, the sludge index of pumping time and moisture content with CDF were low in contrast with PAM. Fermentation experiments demonstrated that sludge with CDF had a comparatively high temperature and low value of E4/E6. Such novel CDF shows enormous potential in wastewater treatment and sludge fermentation.

2019 ◽  
Vol 6 (1) ◽  
pp. 16-20
Author(s):  
Ali Akbar Rahmani Sarmazdeh ◽  
Mostafa Leili

This research mainly aimed to investigate phosphorus removal from stabilization pond effluent by using anionic resins in the continuous flow mode of operation due to high amounts of phosphorus in the wastewater treatment plant effluent of Kaboodrahang, western Iran, as well as the violation from a prescribed effluent standard to discharge receiving the surface waters. For this purpose, the pilot was made of a plexiglass cylinder and other equipment such as pump and other accessories, as well as Purolite A-100 resin. The reactor effects on the desired study parameters were assessed in two warm and cold seasons. The results showed that the phosphorus concentrations reduced from 7-10 mg/L to 4-7 mg/L and the rate of phosphorus removal was higher in the hot season compared to the cold season. Moreover, the optimum temperature and pH were obtained 21ºC and 8.5, respectively. The mean inlet biological oxygen demand (BOD) was 150 mg/L for both warm and cold seasons, where the highest removal rate of 17% was obtained in the cold season. The mean chemical oxygen demand concentration of the pilot was 250 mg/L for both seasons, and the highest removal rate was observed in the cold season with an efficiency of 18%. Regarding the total suspended solids with the mean inlet of 230 mg/L, the highest removal efficiency was obtained 6% in the warm season.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Zhaoqian Jing ◽  
Shiwei Cao

To enhance the biodegradability of residual organic pollutants in secondary effluent of wastewater treatment plants, UV photolysis and ozonation were used in combination as pretreatment before a biological aerating filter (BAF). The results indicated that UV photolysis could not remove much COD (chemical oxygen demand), and the performance of ozonation was better than the former. With UV photolysis combined with ozonation (UV/O3), COD removal was much higher than the sum of that with UV photolysis and ozonation alone, which indicated that UV photolysis could efficiently promote COD removal during ozonation. This pretreatment also improved molecular weight distribution (MWD) and biodegradability greatly. Proportion of organic compounds with molecular weight (MW) <3 kDalton was increased from 51.9% to 85.9%. COD removal rates with BAF and O3/BAF were only about 25% and 38%, respectively. When UV/O3oxidation was combined with BAF, the average COD removal rate reached above 61%, which was about 2.5 times of that with BAF alone. With influent COD ranging from 65 to 84 mg/L, the effluent COD was stably in the scope of 23–31 mg/L. The combination of UV/O3oxidation with BAF was quite efficient in organic pollutants removal for tertiary wastewater treatment.


2020 ◽  
Vol 12 (21) ◽  
pp. 8847
Author(s):  
Ahmed Sharaf ◽  
Bing Guo ◽  
David C. Shoults ◽  
Nicholas J. Ashbolt ◽  
Yang Liu

Compared with conventionally collected sewage, source-diverted greywater has a higher potential for on-site treatment and reuse due to its lower contaminant levels and large volume. A new design of granular activated carbon (GAC) biofilters was developed by incorporating unsaturated and saturated zones in a single stage to introduce an efficient, passive, and easy-to-operate technology for greywater on-site treatment at the household scale. The design was customized for its intended application considering various aspects including the reactor’s configuration, packing media, and feeding strategy. With the highest hydraulic and organic loadings of 1.2 m3 m−2 d−1 and 3.5 kg COD m−2 d−1, respectively, and the shortest retention time of 2.4 h, the system maintained an average total chemical oxygen demand removal rate of 94% with almost complete removal of nutrients throughout its 253 days of operation. The system showed a range of reduction efficacy towards five surrogates representing viruses, bacteria, and Cryptosporidium and Giardia (oo)cysts. A well-functioning biofilm was successfully developed, and its mass and activity increased over time with the highest values observed at the top layers. The key microbes within the biofilter were revealed. Feasibility of the proposed technology was investigated, and implications for design and operation were discussed.


2012 ◽  
Vol 66 (12) ◽  
pp. 2546-2555 ◽  
Author(s):  
Miyoung Choi ◽  
Dong Whan Choi ◽  
Jung Yeol Lee ◽  
Young Suk Kim ◽  
Bun Su Kim ◽  
...  

Growing attention is given to pharmaceutical residue in the water environment. It is known that pharmaceuticals are able to survive from a series of wastewater treatment processes. Concerns regarding pharmaceutical residues are attributed to the fact that they are being detected in water and sediment environment ubiquitously. Pharmaceutical treatment using a series of wastewater treatment processes of the DAF (dissolved air flotation)–MBR (membrane bioreactor)–ozone oxidation was conducted in the study. DAF, without addition of coagulant, could remove CODcr (chemical oxygen demand by Cr) up to over 70%, BOD 73%, SS 83%, T-N 55%, NH4+ 23%, and T-P 65% in influent of municipal wastewater. Average removal rates of water quality parameters by the DAF–MBR system were very high, e.g. CODcr 95.88%, BOD5 99.66%, CODmn (chemical oxygen demand by Mn) 93.63%, T-N 69.75%, NH4-N 98.46%, T-P 78.23%, and SS 99.51%, which satisfy effluent water quality standards. Despite the high removal rate of the wastewater treatment system, pharmaceuticals were eliminated to be about 50–99% by the MBR system, depending on specific pharmaceuticals. Ibuprofen was well removed by MBR system up to over 95%, while removal rate of bezafibrate ranged between 50 and 90%. With over 5 mg/l of ozone oxidation, most pharmaceuticals which survived the DAF–MBR process were removed completely or resulted in very low survival rate within the range of few micrograms per litre. However, some pharmaceuticals such as bezafibrate and naproxen tended to be resistant to ozone oxidation.


Archaea ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Shuo Wang ◽  
Jianzheng Li ◽  
Guochen Zheng ◽  
Guocheng Du ◽  
Ji Li

Hydrogen-producing acetogens (HPA) have a transitional role in anaerobic wastewater treatment. Thus, bioaugmentation with HPA cultures can enhance the chemical oxygen demand (COD) removal efficiency and CH4yield of anaerobic wastewater treatment. Cultures with high degradation capacities for propionic acid and butyric acid were obtained through continuous subculture in enrichment medium and were designated as Z08 and Z12. Bioaugmentation with Z08 and Z12 increased CH4production by glucose removal to 1.58. Bioaugmentation with Z08 and Z12 increased the COD removal rate in molasses wastewater from 71.60% to 85.84%. The specific H2and CH4yields from COD removal increased by factors of 1.54 and 1.63, respectively. Results show that bioaugmentation with HPA-dominated cultures can improve CH4production from COD removal. Furthermore, hydrogen-producing acetogenesis was identified as the rate-limiting step in anaerobic wastewater treatment.


2013 ◽  
Vol 864-867 ◽  
pp. 1608-1611
Author(s):  
Zhong Chen Yu ◽  
Dong Ma ◽  
Song Wang ◽  
Xue Jiao Zhang

Polyacrylamide has been widely used in tertiary oil recovery. Oilfield produced water in a large scale contain polyacrylamide, leading to oilfield environment pollution. In this paper, the nested loops biofilm airlift suspension reactor was used in polyacrylamide wastewater treatment. In the reactor, wastewater can alternately flow through the hypoxic environment fixed light carriers and aerobic environment suspended walnut shell biological carriers, achieving simultaneous removal of organic matter and nitrogen. The influencing factors on the organic compound degradation and denitrification performance were studied. Biological and hydrodynamic model of nitrogen and carbon removal was established. Also, the biological phase structure of the carrier biofilm was observed. The results show that polyacrylamide degradation and ammonia nitrogen removal rate are around 30% and 95%, respectively when the experimental hydraulic retention time is 24h. Due to poor denitrification efficiency; nitrate removal rate is only 20%. The carrier biofilm thickness is appropriate, and filamentous bacteria occupy the dominant position.


2012 ◽  
Vol 66 (6) ◽  
pp. 1220-1224
Author(s):  
Suwasa Kantawanichkul ◽  
Walaya Boontakhum

In this study, the effect of dosing regime on nitrification in a subsurface vertical flow treatment wetland system was investigated. The experimental unit was composed of four circular concrete tanks (1 m diameter and 80 cm deep), filled with gravel (1–2 cm) and planted with Cyperus alternifolius L. Synthetic wastewater with average chemical oxygen demand (COD) and ammonia nitrogen of 1,151 and 339 mg/L was fed into each tank. Different feeding and resting periods were applied: continuous flow (tank 1), 4 hrs on and 4 hrs off (tank 2), 1 hr on and 3 hrs off (tank 3) and 15 minutes on and 3 hrs 45 minutes off (tank 4). All four tanks were under the same hydraulic loading rate of 5 cm/day. After 165 days the reduction of total Kjeldahl nitrogen and ammonia nitrogen and the increase of nitrate nitrogen were greatest in tank 4, which had the shortest feeding period, while the continuous flow produced the lowest results. Effluent tanks 2 and 3 experienced similar levels of nitrification, both higher than that of tank 1. Thus supporting the idea that rapid dosing periods provide better aerobic conditions resulting in enhanced nitrification within the bed. Tank 4 had the highest removal rates for COD, and the continuous flow had the lowest. Tank 2 also exhibited a higher COD removal rate than tank 3, demonstrating that short dosing periods provide better within-bed oxidation and therefore offer higher removal efficiency.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 393-398 ◽  
Author(s):  
J.S. Begg ◽  
R.L. Lavigne ◽  
P.L.M. Veneman

Reed beds are an alternative technology wastewater treatment system that mimic the biogeochemical processes inherent in natural wetlands. The purpose of this project was to determine the effectiveness of a reed bed sludge treatment system (RBSTS) in southern New England after a six-year period of operation by examining the concentrations of selected metals in the reed bed sludge biomass and by determining the fate of solids and selected nutrients. Parameters assessed in both the reed bed influent and effluent: total suspended solids, biochemical oxygen demand, nitrate-nitrogen and total phosphorus. In addition, the following metals were studied in the reed bed influent, effluent and Phragmites plant tissue and the sludge core biomass: boron, cadmium, chromium, copper, iron, lead, manganese, molybdenum, nickel, and zinc. The removal efficiencies for sludge dewatering, total suspended solids and biochemical oxygen demand were all over 90%. Nitrate and total phosphorus removal rates were 90% and 80% respectively. Overall metals removal efficient was 87%. Copper was the only metal in the sludge biomass that exceeded the standards set by the Massachusetts Department of Environmental Protection for land disposal of sludge. The highest metal concentrations, for the most part, tended to be in the lower tier of the sludge profile. The exception was boron, which was more concentrated in the middle tier of the sludge profile. The data and results presented in this paper support the notion that reed bed sludge treatment systems and the use of reed beds provide an efficient and cost effective alternative for municipal sludge treatment.


2015 ◽  
Vol 71 (6) ◽  
pp. 832-839 ◽  
Author(s):  
O. Tiron ◽  
C. Bumbac ◽  
I. V. Patroescu ◽  
V. R. Badescu ◽  
C. Postolache

The study used activated algae granules for low-strength wastewater treatment in sequential batch mode. Each treatment cycle was conducted within 24 h in a bioreactor exposed to 235 μmol/m2/s light intensity. Wastewater treatment was performed mostly in aerobic conditions, oxygen being provided by microalgae. High removal efficiency of chemical oxygen demand (COD) was achieved (86–98%) in the first hours of the reaction phase, during which the indicator's removal rate was 17.4 ± 3.9 mg O2/g h; NH4+ was removed during organic matter degradation processes with a rate of 1.8 ± 0.6 mg/g h. After almost complete COD removal, the NH4+ remaining in the liquor was removed through nitrification processes promoted by the increase of the liquor's oxygen saturation (O2%), the transformation rate of NH4+ into NO3− increasing from 0.14 ± 0.05 to 1.5 ± 0.4 mg NH4+/g h, along with an O2% increase. A wide removal efficiency was achieved in the case of PO43– (11–85%), with the indicator's removal rate being 1.3 ± 0.7 mg/g h. In the provided optimum conditions, the occurrence of the denitrifying activity was also noticed. A large pH variation was registered (5–8.5) during treatment cycles. The granular activated algae system proved to be a promising alternative for wastewater treatment as it also sustains cost-efficient microalgae harvesting, with microalgae recovery efficiency ranging between 99.85 and 99.99% after granules settling with a velocity of 19 ± 3.6 m/h.


2016 ◽  
Vol 73 (11) ◽  
pp. 2662-2669 ◽  
Author(s):  
Siyu Song ◽  
Jing Pan ◽  
Shiwei Wu ◽  
Yijing Guo ◽  
Jingxiao Yu ◽  
...  

The matrix oxidation reduction potential level, organic pollutants and nitrogen removal performances of eight subsurface wastewater infiltration systems (SWISs) (four with intermittent aeration, four without intermittent aeration) fed with influent chemical oxygen demand (COD)/N ratio of 3, 6, 12 and 18 were investigated. Nitrification of non-aerated SWISs was poor due to oxygen deficiency while higher COD/N ratios further led to lower COD and nitrogen removal rate. Intermittent aeration achieved almost complete nitrification, which successfully created aerobic conditions in the depth of 50 cm and did not change anoxic or anaerobic conditions in the depth of 80 and 110 cm. The sufficient carbon source in high COD/N ratio influent greatly promoted denitrification in SWISs with intermittent aeration. High average removal rates of COD (95.68%), ammonia nitrogen (NH4+-N) (99.32%) and total nitrogen (TN) (89.65%) were obtained with influent COD/N ratio of 12 in aerated SWISs. The results suggest that intermittent aeration was a reliable option to achieve high nitrogen removal in SWISs, especially with high COD/N ratio wastewater.


Sign in / Sign up

Export Citation Format

Share Document