scholarly journals Biological-based control strategies for MBR membrane biofouling: a review

Author(s):  
Yin Cui ◽  
Huan Gao ◽  
Ran Yu ◽  
Lei Gao ◽  
Manjun Zhan

Abstract Membrane bioreactor (MBR) technology has been paid extensive attentions for wastewater treatment because of its advantages of high effluent quality and minimized occupation space and sludge production. However, the membrane fouling is always an inevitable problem which causes high operation and maintenance costs and prevents the wide use of MBR technology. The membrane biofouling is the most complicated and the relatively slow progress among all types of fouling. In recent years, many membrane biofouling control methods have been developed. Different from the physical or chemical methods, the biological-based strategies are not only more effective for membrane biofouling control, but also milder and more environment-friendly and are therefore, have been increasingly employed. This paper mainly focused on the mechanism, unique advantages and development of biological-based control strategies for MBR membrane biofouling such as quorum quenching, uncoupling, flocculants and so on. The paper summarized the up-to-date development of membrane biofouling control strategies, emphasized the advantages and promising potential of biological-based ones, and point out the future studies directions.

2019 ◽  
Vol 279 ◽  
pp. 195-201 ◽  
Author(s):  
Jinhui Huang ◽  
Ying Yang ◽  
Guangming Zeng ◽  
Yanling Gu ◽  
Yahui Shi ◽  
...  

2020 ◽  
Vol 194 ◽  
pp. 04026
Author(s):  
Xinmeng Jiao ◽  
Kang Xie ◽  
Liping Qiu

Membrane bioreactor (MBR) is a kind of reputable and prospective technology for wastewater treatment and reformation applications. However, membrane fouling caused by the formation of biofilm on the membrane surface, especially biofouling, is a major obstacle that limits the energy-saving operation and maintenance of the membrane bioreactor (MBR). Microbial communication (known as Quorum Sensing (QS)) is the cause of this fouling phenomenon. A new strategy called Quorum Quenching (QQ) seems to have been successfully used for biological pollution control in wastewater treatment MBR. This review summarizes the latest findings regarding membrane fouling, QS mechanisms and QQ applications. We discussed the opportunities for further practical application of self-cleaning engineering QQ bacteria in MBR.


2012 ◽  
Vol 46 (9) ◽  
pp. 4877-4884 ◽  
Author(s):  
Hyun-Suk Oh ◽  
Kyung-Min Yeon ◽  
Cheon-Seok Yang ◽  
Sang-Ryoung Kim ◽  
Chung-Hak Lee ◽  
...  

2014 ◽  
Vol 926-930 ◽  
pp. 158-161
Author(s):  
Wan You Zhang ◽  
Sheng Chao Ji ◽  
Hai Feng Zhang ◽  
Xi Xin Zhang

Membrane bioreactor (MBR) has developed rapidly in recent years; however, the membrane fouling problems are affecting its further widespread application. This paper discusses the role of metal ions in the mixture in the mechanism; also on the high-priced metal ions coexist in the mixture when the effects of biological flocculation process; finally, the direction of future research in this area are summarized.


Membranes ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 24 ◽  
Author(s):  
Xianjun Du ◽  
Yaoke Shi ◽  
Veeriah Jegatheesan ◽  
Izaz Ul Haq

Compared with the traditional activated sludge process, a membrane bioreactor (MBR) has many advantages, such as good effluent quality, small floor space, low residual sludge yield and easy automatic control. It has a promising prospect in wastewater treatment and reuse. However, membrane fouling is the biggest obstacle to the wide application of MBR. This paper aims at summarizing the new research progress of membrane fouling mechanism, control, prediction and detection in the MBR systems. Classification, mechanism, influencing factors and control of membrane fouling, membrane life prediction and online monitoring of membrane fouling are discussed. The research trends of relevant research areas in MBR membrane fouling are prospected.


1999 ◽  
Vol 39 (4) ◽  
pp. 93-102 ◽  
Author(s):  
L. J. S. Lukasse ◽  
K. J. Keesman ◽  
A. Klapwijk ◽  
G. van Straten

Four control strategies for N-removal in alternating activated sludge plants (ASP's) are compared: 1. timer-based, 2. switching the aeration on/off when depletion of nitrate/ammonium is detected, 3. switching the aeration on/off when ammonium crosses an upper/lower-bound, 4. the newly developed adaptive receding horizon optimal controller (ARHOC) as presented in Lukasse et al. (1997). The comparison is made by simulating the controllers' application to an alternating continuously-mixed activated sludge reactor preceded by a small anoxic reactor for predenitrification. The biological processes in the reactors are modelled by the activated sludge model no. 1. Realistic influent patterns, measured at a full-scale wastewater treatment plant, are used. The results show that three totally different controllers (timer-based, NH4-bounds based and ARHOC) can achieve a more or less equal effluent quality, if tuned optimally. The difference mainly occurs in the sensitivity to suboptimal tunings. The timer-based strategy has a higher aeration demand. The sensitivity of the ARHOC controller to sub-optimal tuning, known measurement time delays and changing plant loads is significantly less than that of the other controllers. Also its tuning is more natural and explicit.


2008 ◽  
Vol 58 (10) ◽  
pp. 1925-1931 ◽  
Author(s):  
Z. Huang ◽  
S. L. Ong ◽  
H. Y. Ng

Two 6-L submerged anaerobic membrane bioreactors (SAMBR) with SRT of 30 and 60 d (denoted as R30 and R60, respectively) were set up and operated for five months, with a mixture of glucose as substrate. Feasibility of SAMBR was studied for treatment of low-strength wastewater. First two months were identified as acclimation stage. A COD removal efficiency was achieved stably at around 99% and biogas productions were maintained at 0.023 and 0.028 L CH4/gMLVSS∙d for R30 and R60, respectively. Even though R60 contained higher MLVSS concentration, no significant difference of treatment performances between both reactors was found due to the low organic loading rate and high purification function of membrane. In the investigation of membrane fouling, less irreversible fouling was observed for R30 compared to R60. High non-flocculent concentration of R60 would be responsible for membrane internal pore blocking and deteriorated effluent quality.


2018 ◽  
Vol 40 (7) ◽  
pp. 1067-1075 ◽  
Author(s):  
Jinhui Huang ◽  
Jianxin Zhou ◽  
Guangming Zeng ◽  
Yanling Gu ◽  
Yi Hu ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
L. Vanysacker ◽  
C. Denis ◽  
P. Declerck ◽  
A. Piasecka ◽  
I. F. J. Vankelecom

Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay usingPseudomonas aeruginosaorEscherichia coliseparately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spikedP. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development.


2017 ◽  
Vol 75 (8) ◽  
pp. 1982-1989 ◽  
Author(s):  
Ruijun Zhang ◽  
Shengnan Yuan ◽  
Wenxin Shi ◽  
Cong Ma ◽  
Zhiqiang Zhang ◽  
...  

With the purpose of improving the ultrafiltration (UF) efficiency, anionic polyacrylamide (APAM) has been used as a coagulant aid in the flocculation-UF process. In this study, the impact of APAM on UF efficiency has been investigated with regard to membrane fouling, membrane cleaning and effluent quality. The results indicated that the optimal dosage of APAM had positive impacts on membrane fouling control, membrane cleaning and effluent quality. According to the flux decline curve, scanning electron microscopy and contact angle characterization, the optimal dosage of APAM was determined to be 0.1 mg/L coupled with 2 mg/L (as Al3+) poly-aluminium chloride. Under this optimal condition, membrane fouling can be mitigated because of the formation of a porous and hydrophilic fouling layer. APAM in the fouling layer can improve the chemical cleaning efficiency of 0.5% NaOH due to the disintegration of the fouling layer when APAM is dissolved under strong alkaline conditions. Furthermore, with the addition of APAM in the flocculation-UF process, more active adsorption sites can be formed in the flocs as well as the membrane fouling layer, thus more antipyrine molecules in the raw water can be adsorbed and removed in the flocculation-UF process.


Sign in / Sign up

Export Citation Format

Share Document