scholarly journals Evaluation of power generation and treatment efficiency of dairy wastewater in microbial fuel cell using TiO2 – SPEEK as proton exchange membrane

Author(s):  
D. Vidhyeswari ◽  
A. Surendhar ◽  
S. Bhuvaneshwari

Abstract The aim of this study is to synthesis SPEEK composite proton exchange membrane with the addition of TiO2 nanofillers for microbial fuel cell application. SPEEK composite membrane with varying weight percentage of TiO2 (2.5, 5, 7.5 and 10%) was prepared to study the effect of TiO2 concentration on membrane performance. Synthesized composite membranes were subjected to various characterization studies such as FT-IR, XRD, Raman spectroscopy; TGA, UTM and SEM. Physico-chemical properties of membrane such as water uptake capacity, ion exchange capacity and thickness were also analyzed. 5% TiO2 – SPEEK composite membrane exhibited the higher water uptake capacity value and Ion exchange capacity value of 31% and 1.71 meq/g respectively. Performance of the MFC system with TiO2 – SPEEK membranes were evaluated and compared with the pristine SPEEK and Nafion membrane. 5% TiO2 – SPEEK membrane produced the higher power density (1.22 W/m2) and voltage (0.635 V) than the other membranes investigated. Efficacy of MFC in wastewater treatment was evaluated based on the chemical oxygen demand (COD), total organic carbon content and turbidity. Biofilm growth over the surface of the electrodes was also analyzed using scanning electron microscopy.

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 914 ◽  
Author(s):  
Lucia Mazzapioda ◽  
Stefania Panero ◽  
Maria Assunta Navarra

Nafion composite membranes, containing different amounts of mesoporous sulfated titanium oxide (TiO2-SO4) were prepared by solvent-casting and tested in proton exchange membrane fuel cells (PEMFCs), operating at very low humidification levels. The TiO2-SO4 additive was originally synthesized by a sol-gel method and characterized through x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and ion exchange capacity (IEC). Peculiar properties of the composite membranes, such as the thermal transitions and ion exchange capacity, were investigated and here discussed. When used as an electrolyte in the fuel cell, the composite membrane guaranteed an improvement with respect to bare Nafion systems at 30% relative humidity and 110 °C, exhibiting higher power and current densities.


2018 ◽  
Vol 18 (2) ◽  
pp. 313 ◽  
Author(s):  
Muhammad Ridwan Septiawan ◽  
Dian Permana ◽  
Sitti Hadijah Sabarwati ◽  
La Ode Ahmad ◽  
La Ode Ahmad Nur Ramadhan

Chitosan was modified by maleic anhydride, and it was then functionalized using heterogeneous and blending method to obtain the membrane. The results of the reaction between chitosan with maleic anhydride were signed by the new peak appears around 1475 cm-1 which attributed to C=C bending of alkene. The new peak also appears at 1590 cm-1 which attributed to N-H bending of amide. Chitosan-maleic anhydride membranes show microstructure of chitosan membrane with high porous density and rigidity while chitosan-maleic anhydride membranes have clusters. In addition, the thermal tenacity of membranes reached 500 °C. Modified membrane by heterogeneous and blending method have higher water uptake, ion exchange capacity, and proton conductivity than chitosan membrane. Moreover, the blending method is much more effective than the heterogeneous method that can be exhibited from ion exchange capacity and proton conductivity values of 1.08–6.38 meq g-1 and 1x10-3–1x10-2 S cm-1, 0.92–2.27 meq g-1 and 1.53x10-4–3.04x10-3 S cm-1, respectively. The results imply that modification of chitosan membrane with the addition of maleic anhydride using heterogeneous and blending method can be applied to proton exchange membrane.


2016 ◽  
Vol 1 (1) ◽  
pp. 14
Author(s):  
Siti Wafiroh ◽  
Suyanto Suyanto ◽  
Yuliana Yuliana

AbstrakDi era globalisasi ini, kebutuhan bahan bakar fosil semakin meningkat dan ketersediannya semakin menipis. Oleh karena itu, dibutuhkan bahan bakar alternatif seperti Proton Exchange Membrane Fuel Cell (PEMFC). Tujuan dari penelitian ini adalah membuat dan mengkarakterisasi membran komposit kitosan-sodium alginat dari rumput laut coklat (Sargassum sp.) terfosforilasi sebagai Proton Exchange Membrane Fuel Cell (PEMFC). PEM dibuat dengan 4 variasi perbandingan konsentrasi antara kitosan dengan sodium alginat 8:0, 8:1, 8:2, dan 8:4 (b/b). Membran komposit kitosan-sodium alginat difosforilasi dengan STPP 2N. Karakterisasi PEM meliputi: uji tarik, swelling air, kapasitas penukar ion, FTIR, SEM, permeabilitas metanol, dan konduktivitas proton. Berdasarkan hasil analisis tersebut, membran yang optimal adalah perbandingan 8:1 (b/b) dengan nilai modulus young sebesar 0,0901 kN/cm2, swelling air sebesar 19,14 %, permeabilitas metanol sebesar 72,7 x 10-7, dan konduktivitas proton sebesar 4,7 x 10-5 S/cm. Membran komposit kitosan-sodium alginat terfosforilasi memiliki kemampuan yang cukup baik untuk bisa diaplikasikan sebagai membran polimer elektrolit dalam PEMFC. Kata kunci: kitosan, sodium alginat, terfosforilasi, PEMFC  AbstractIn this globalization era, the needs of fossil fuel certainly increases, but its providence decreases. Therefore, we need alternative fuels such as Proton Exchange Membrane Fuel Cell (PEMFC). The purpose of this study is preparationand characterization of phosphorylated chitosan-sodium alginate composite membrane from brown seaweed (Sargassum sp.) as Proton Exchange Membrane Fuel Cell (PEMFC). PEM is produced with 4 variations of concentration ratio between chitosan and sodium alginate 8:0, 8:1, 8:2, and 8:4 (w/w). Chitosan-sodium alginate composite membrane phosphorylated with 2 N STPP. The characterization of PEM include: tensile test, water swelling, ion exchange capacity, FTIR, SEM, methanol permeability, and proton conductivity. Based on the analysis result, the optimal membrane is ratio of 8:1 (w/w) with the value of Young’s modulus about 0.0901 kN/cm2, water swelling at 19.14%, methanol permeability about 72.7 x 10-7, and proton conductivity about 4.7 x 10-5 S/cm. The phosphorylated chitosan-sodium alginate composite membrane has good potentials for the application of the polymer electrolyte membrane in PEMFC. Keywords: chitosan, sodium alginate, phosphorylated, PEMFC


2014 ◽  
Vol 666 ◽  
pp. 3-7
Author(s):  
Theampetch Apichaya ◽  
Paweena Prapainainar ◽  
Chaiwat Prapainainar

In this paper, proton conducting composite membranes of Nafion®-mordenite for direct methanol fuel cell (DMFC) were prepared using solution casting method. Mordenite, used as inorganic filler, was incorporated into Nafion polymer in order to improve membrane properties for DMFC application. Effect of solution casting temperature on resulting composite membranes was focused. The temperature of the membrane preparation was varied from 80 to 120°C. Properties and morphology of the resulting membranes including solubility, water uptake, ion – exchange capacity were investigated and reported. It was found that composite membrane prepared at 100°C gave the most alcohol resistance and mechanical stability membrane with 0.59% soluble. Furthermore, it gave highest ion – exchange capacity, 0.10 meq⋅g-1, which is 33% and 98% higher than the membranes prepared at 80°C and 120°C respectively.


Sign in / Sign up

Export Citation Format

Share Document