scholarly journals A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

2014 ◽  
Author(s):  
James Neeway ◽  
Eric Pierce ◽  
Vicky Freedman ◽  
Joseph Ryan ◽  
Nikolla Qafoku
1993 ◽  
Vol 333 ◽  
Author(s):  
B. Grambow ◽  
Kernforschungszentrum Karlsruhe

ABSTRACTThe current knowledge on the glass dissolution mechanism and the representation of glass dissolution concepts within overall repository performance assessment models are briefly summarized and uncertainties related to mechanism, radionuclide chemistry and parameters are discussed. Understanding of the major glass dissolution processes has been significantly increased in recent years. Long-term glass stability is related to the long-term maintenance of silica saturated conditions. The behavior of individual radionuclides in the presence of a dissolving glass has not been sufficiently and results do not yet allow meaningful predictions. Conservative long-term predictions of glass matrix dissolution as upper limit for radionuclide release can be made with sufficient confidence, however these estimations generally result in a situation were the barrier function of the glass is masked by the efficiency of the geologic barrier. Realistic long-term predictions may show that the borosilicate waste glass contributes to overall repository safety to a much larger extent than indicated by overconservatism. Today realistic predictions remain highly uncertain and much more research work is necessary. In particular the long-term rate under silica saturated conditions needs to be understood and the behavior of individual radionuclides in the presence of a dissolving glass deserves more systematic investigations.


2002 ◽  
Vol 757 ◽  
Author(s):  
Diana H. Bacon ◽  
B. Peter McGrail

ABSTRACTA set of reactive chemical transport calculations was conducted with the Subsurface Transport Over Reactive Multi-phases (STORM) code to evaluate the long-term performance of a representative low-activity waste glass in a shallow subsurface disposal system located on the Hanford Site. Technetium, the main contributor to a drinking water dose, is assumed to be released congruently with the dissolution of the glass. Sodium is released at a higher rate via a kinetic ion-exchange reaction. Aqueous equilibrium reactions involving sodium and other dissolved glass constituents increase the pH, and hence the rate of glass dissolution. The precipitation of secondary minerals can also lower the amount of aqueous dissolved silica, which can increase the rate of glass dissolution. Predicted technetium release rates, however, remain several orders of magnitude lower than required by drinking water regulations.


Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

2008 ◽  
Vol 56 (S 1) ◽  
Author(s):  
CC Badiu ◽  
W Eichinger ◽  
D Ruzicka ◽  
I Hettich ◽  
S Bleiziffer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document