Scaling up the Enzymatic Hydrolysis of Bovine Plasma Protein to Produce an Antioxidant from a Biological Source

2020 ◽  
Vol 22 (1) ◽  
pp. 150-158
Author(s):  
Nathalia A. Gómez Grimaldos ◽  
José E.M. Zapata

Background: modern society, there is a tendency to consume products with natural origins and minimum chemical additives. This has encouraged the replacement of synthetic antioxidants for the ones obtained from natural sources, such as the antioxidants acquired from enzymatic protein hydrolysates. Objective: In this study, the process of enzymatic hydrolysis of proteins from bovine plasma, which produces hydrolysates with an Antioxidant Capacity (AC), was scaled up from 1 to 5 L. Methods: An experimental design was developed in 1 L to evaluate the effect of the Substrate concentration (So) on the time needed to reach a Degree of Hydrolysis (DH) of 20% as well as the AC. Results: The best conditions in the 1 L reactor controlled by a Titrando 842 were transferred to 5L in a BioFlo310 reactor. These conditions were achieved at a ratio of 80g/L of the substrate and 0.89 AU of Alcalase 2.4L/g of the substrate in order to obtain a level of 16.36 ± 0.21min of the 20% of DH and antioxidant capacity of 58.98 ± 1.80%. Conclusion: The results showed that DH depends significantly on So, while the antioxidant capacity only depends on the DH. Additionally, the dimensional analysis using Re as a scaling criterion allowed us to obtain the same results in the model (1 L) and the prototype (5 L).

2019 ◽  
Vol 15 (2) ◽  
pp. 144-153 ◽  
Author(s):  
Nathalia A. Gómez ◽  
Leidy J. Gómez ◽  
José E. Zapata

Background: The animal blood that is produced in a slaughterhouse is a potential source of inexpensive proteins used in the food industry around the world. However, 60% of it is surplus, and it ends with a negative environmental impact. Introduction: The enzymatic hydrolysis of proteins represents a good way to produce peptides with different biological activities. Methods: Enzymatic hydrolysis of bovine plasma with subtilisin at an alkaline pH and 61.5°C was performed using the pH-stat method. Experiments were conducted considering the effects of a high initial substrate concentration (So) and the enzyme/substrate ratio (E/S) minimizing the processing time necessary to obtain a specific degree of hydrolysis (DH). Results: The best conditions obtained were 42 g/L of So and 0.89 AU/g substrate of E/S until a DH of 20% in 11,1 ± 1,1 min was achieved to the tested conditions, which result in a fitted empirical polynomial equation of degree 3. Conclusion: A kinetic equation is established to relate the DH and the reaction time to a relative error of less than 5% in the fit, to obtain a good antioxidant product in an industrially interesting time. Additionally, the results suggest a good adjustment of the data with a determination coefficient (R2) of 0.9745 in validation.


2013 ◽  
Vol 411-414 ◽  
pp. 3205-3209
Author(s):  
Fang Qian ◽  
Lei Zhao ◽  
Shu Juan Jiang ◽  
Guang Qing Mu

Based on single factor analysis for the enzymatic hydrolysis of whey protein, papain was selected as the optimal enzyme and its enzymatic hydrolysis conditions were optimized by the quadratic regression orthogonal rotary test. The orthogonal regression model for degree of hydrolysis (DH) to three factors including temperature (X1), time (X2), enzyme dosage (X3) was established as follow: DH=10.40+0.22X1+0.30X2+1.31X3+0.019X1X2+0.011X1X3-0.039X2X3-0.39X12-0.16X22-0.40X32, Verification test showed a DH of 11.7% was obtained at the optimal hydrolysis condition of 56.6°C, 113.8 min and enzyme 8213.7 U /g protein, which basically consisted with the model theoretical value.


2011 ◽  
Vol 20 (No. 1) ◽  
pp. 7-14 ◽  
Author(s):  
M. Hrčková ◽  
M. Rusňáková ◽  
J. Zemanovič

Commercial defatted soy flour (DSF) was dispersed in distilled water at pH 7 to prepare 5% aqueous dispersion. Soy protein hydrolysates (SPH) were obtained by enzymatic hydrolysis of the DSF using three different proteases (Flavourzyme 1000 L, No-vozym FM 2.0 L and Alcalase 2.4 L FG). The highest degree of hydrolysis (DH 39.5) was observed in the presence of protease Flavourzyme. SPH were used for measuring functional properties (foaming stability, gelation). Treatment with Flavourzyme improved foaming of proteins of DSF. Foaming stability was low in the presence of Novozym. Proteases treated DSF showed good gelation properties, mainly in the case of treatment with Flavourzyme. SDS-PAGE analysis showed that after enzyme ad-dition to the 5% aqueous dispersion of DSF each enzyme degraded both b-conglycinin and glycinin. In general, the basic polypeptide from glycinin showed the highest resistance to proteolytic activity. The most abundant free amino acids in the hydrolysates were histidine (30%), leucine (24%) and tyrosine (19%) in the case of the treatment with proteases Alcalase and Novozym, and arginine (22.1%), leucine (10.6%) and phenylalanine (12.9%) in the case of the treatment with Flavourzyme.  


2020 ◽  
Vol 11 (12) ◽  
pp. 10907-10912
Author(s):  
Nathalia A. Gómez-Grimaldos ◽  
Leidy J. Gómez-Sampedro ◽  
José E. Zapata-Montoya ◽  
Gabriel López-García ◽  
Antonio Cilla ◽  
...  

Bovine plasma hydrolysates with a degree of hydrolysis of 19.1% have an iron chelating capacity of 38.5 ± 0.4% and increase the synthesis of ferritin in Caco-2 cells five-fold compared to the control.


2012 ◽  
pp. 33-41 ◽  
Author(s):  
Zorica Knezevic-Jugovic ◽  
Andrea Stefanovic ◽  
Milena Zuza ◽  
Stoja Milovanovic ◽  
Sonja Jakovetic ◽  
...  

The objectives of this study were to examine the effect of sonication and high-pressure carbon dioxide processing on proteolytic hydrolysis of egg white proteins and antioxidant activity of the obtained hydrolysates. It appeared that the ultrasound pretreatment resulted in an increase in the degree of hydrolysis of the enzymatic reaction while the high-pressure carbon dioxide processing showed an inhibition effect on the enzymatic hydrolysis of egg white proteins to some extent. The antioxidant activity of the obtained hydrolysates was improved by ultrasound pretreatment of egg white proteins at the pH 8.3. Thus, the combination of ultrasound pretreatment at the pH 8.3 and subsequent enzymatic hydrolysis with alcalase at 50?C and pH 8.0 could offer a new approach to the improvement of the functional properties of egg white proteins and their biological activity.


2020 ◽  
Vol 21 (12) ◽  
pp. 1249-1258
Author(s):  
Cindy T. Sepúlveda ◽  
José E. Zapata

Background: Fish is an essential source of nutrients for human nutrition due to the composition of proteins, vitamins, and minerals, among other nutrients. Enzymatic hydrolysis represents an alternative for the use of by-products of the aquaculture industry. Objective: We propose to evaluate the effect of stirring speed, temperature, and initial protein concentration on the degree of hydrolysis of proteins and antioxidant activity of red tilapia (Oreochromis spp.) viscera hydrolysates. Methods: The effect of stirring speed, temperature, and initial protein concentration on the degree of hydrolysis of proteins and antioxidant activity was evaluated using an experimental design that was adjusted to a polynomial equation. The hydrolysate was fractioned to determine the antioxidant activity of the fractions, and functional properties were also measured. Results: Stirring speed and protein concentration presented a statistically significant effect (p <0.05) on all the response variables. However, the temperature did not present a statistically significant effect on the degree of hydrolysis. Discussion: The best conditions of hydrolysis were stirring speed of 51.44 rpm, a temperature of 59.15°C, and the protein concentration of 10 g L-1. The solubility of the hydrolysate protein was high at different pH, and the hydrolysate fraction with the highest antioxidant activity has a molecular weight <1 kDa. Conclusion: The degree of hydrolysis and the biological activity of red tilapia viscera hydrolysates (Oreochromis spp.) are affected by temperature, substrate concentration, and stirring speed. The optimal conditions of hydrolysis allowed to obtain a hydrolysate with antioxidant activity are due to the peptides with low molecular weight.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yanbin Zheng ◽  
Qiushi Chen ◽  
Anshan Shan ◽  
Hao Zhang

For utilizing the blood cells (BCs) effectively, enzymatic hydrolysis was applied to produce the enzymatically hydrolyzed blood cells (EHBCs) by using a neutral protease as a catalyst. The results of the single-factor experiments showed optimal substrate concentration, enzyme to substrate ratio (E/S), pH, temperature, and incubation period were 1.00%, 0.10, 7.00, 50.00°C, and 12.00 h, respectively. The optimized hydrolysis conditions from response surface methodology (RSM) were pH 6.50, E/S 0.11, temperature 45.00°C, and incubation period 12.00 h. Under these conditions (substrate concentration 1.00%), the degree of hydrolysis (DH) was 35.06%. The free amino acids (FAAs) content of the EHBCs (35.24%) was 40.46 times higher than BCs while the total amino acids (TAAs) content was lower than BCs. The scores of lysine (human 0.87; pig 0.97), valine (human 1.42; pig 1.38), leucine (human 1.50; pig 1.90), tyrosine (human 0.84; pig 1.09), and histidine (human 2.17; pig 2.50) indicated that the EHBCs basically fulfilled the adult human and pig nutritional requirements. The calculated protein efficiency ratios (C-PERs) of the EHBCs were 3.94, 6.19, 21.73, and 2.04. In summary, the EHBCs were produced successfully with optimized conditions and could be a novel protein source for humans and pigs.


Food Research ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 153-162
Author(s):  
M.K. Zainol ◽  
F.W. Abdul Sukor ◽  
A. Fisal ◽  
T.C. Tuan Zainazor ◽  
M.R. Abdul Wahab ◽  
...  

This study was aimed to optimise the Alcalase® enzymatic hydrolysis extraction of Asiatic hard clam (AHC) (Meretrix meretrix) protein hydrolysate in terms of hydrolysis time, hydrolysis temperature, hydrolysis pH, and concentration of enzyme. Protein hydrolysate produced from AHC (M. meretrix) meat was used to determine the optimum hydrolysis conditions. Hydrolysis of AHC meat was optimised using the Central Composite Design Response Surface Methodology (RSM) (CCD). The relationship between four parameters such as temperature (45 – 65°C), enzyme to substrate concentration (1 – 2%), hydrolysis time (60 – 180 mins), and pH (7.5 – 9.5) to the degree of hydrolysis was investigated. The optimum conditions for enzymatic hydrolysis of AHC meat to achieve the maximum degree of hydrolysis (DH) were observed at 65°C, enzyme to substrate concentration of 1%, hydrolysis time of 60 mins, and pH 7.5. The enzymatic protein hydrolysis of AHC meat was predicted using a two factors interaction (2FI) model. Under these optimum conditions, DH's predicted value was 97.41%, which was close to the experimental value (97.89%). The freeze-dried protein hydrolysate powder was characterized concerning the proximate composition. Proximate analysis revealed that the AHC meat contains 7.92±1.76% of moisture, 2.23±0.89% of crude fat, 1.98±0.82 of ash, and 10.53±0.04% of crude protein. While the Asiatic hard clam protein hydrolysate (AHCPH) composed 9.12±0.02% of moisture, 0.80±0.29% of crude fat, and 27.76±0.10% of ash. The protein hydrolysate produced also contained high protein content (50.09±0.88%) and may serve as a good protein source.


Sign in / Sign up

Export Citation Format

Share Document