Anticancer potential of Naringenin, Biosynthesis, Molecular target, and structural perspectives

Author(s):  
Om Prakash ◽  
Ruchi Singh ◽  
Namrata Singh ◽  
Shazia Usmani ◽  
Mohd Arif ◽  
...  

: Numerous novel medicinal agents isolated from plant sources were used as indigenous remedies for the management and treatment of various types of cancer diseases. Naringenin is a naturally occurring flavanone glycoside and aglycone (genin) moiety of naringin, predominantly found in citrus and grapefruits, has emerged as a potential therapeutic agent for the management of a variety of diseases. A huge number of scientific papers have been published on naringenin describing its detailed studies and its therapeutic application in different diseases. The current study highlights, a comprehensive study on naringenin concerning its biosynthesis, molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), and structure-activity relationships (SARs), and patents granted have been highlighted. Naringenin and its derivatives has remarkable anti-cancer activity due to their inhibitory potential against diverse targets namely ABCG2/P-gp/BCRP, 5a-reductase, 17-bhydroxysteroid dehydrogenase, aromatase, proteasome, HDAC/Situin-1, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, topoisomerase-II, cathepsin-K, Wnt, NF-kB, B-Raf and mTOR, etc. With the huge knowledge of molecular targets, structural intuition, and SARs, the current study may be beneficial to design more potent, safe, effective, and economic anti-cancer naringenin. This is concluded that naringenin is a promising natural product for the management and therapy of cancer. Further evolution for pharmacological importance, clinical research, and trials are required to manifest its therapeutic action on metabolic syndrome in the human community.

2021 ◽  
Vol 12 ◽  
Author(s):  
Lin Jiang ◽  
Yunhe Li ◽  
Liye Wang ◽  
Jian Guo ◽  
Wei Liu ◽  
...  

Lysozymes are naturally occurring enzymes present in a variety of biological organisms, such as bacteria, fungi, and animal bodily secretions and tissues. It is also the main ingredient of many ethnomedicines. It is well known that lysozymes and lysozyme-like enzymes can be used as anti-bacterial agents by degrading bacterial cell wall peptidoglycan that leads to cell death, and can also inhibit fungi, yeasts, and viruses. In addition to its direct antimicrobial activity, lysozyme is also an important component of the innate immune system in most mammals. Increasing evidence has shown the immune-modulatory effects of lysozymes against infection and inflammation. More recently, studies have revealed the anti-cancer activities of lysozyme in multiple types of tumors, potentially through its immune-modulatory activities. In this review, we summarized the major functions and underlying mechanisms of lysozymes derived from animal and plant sources. We highlighted the therapeutic applications and recent advances of lysozymes in cancers, hypertension, and viral diseases, aiming toseeking alternative therapies for standard medical treatment bypassing side effects. We also evaluated the role of lysozyme as a promising cancer marker for prognosis to indicate the outcomes recurrence for patients.


2010 ◽  
Vol 999 (999) ◽  
pp. 1-14 ◽  
Author(s):  
K. Chikamori ◽  
A.G. Grozav ◽  
T. Kozuki ◽  
D. Grabowski ◽  
R. Ganapathi ◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Abhishek Kumar ◽  
Neeraj Masand ◽  
Vaishali M. Patil

Abstract: Breast cancer is the most common and highly heterogeneous neoplastic disease comprised of several subtypes with distinct molecular etiology and clinical behaviours. The mortality observed over the past few decades and the failure in eradicating the disease is due to the lack of specific etiology, molecular mechanisms involved in initiation and progression of breast cancer. Understanding of the molecular classes of breast cancer may also lead to new biological insights and eventually to better therapies. The promising therapeutic targets and novel anti-cancer approaches emerging from these molecular targets that could be applied clinically in the near future are being highlighted. In addition, this review discusses some of the details of current molecular classification and available chemotherapeutics


Phytomedicine ◽  
2013 ◽  
Vol 20 (6) ◽  
pp. 521-527 ◽  
Author(s):  
B.T. Ramesha ◽  
H.K. Suma ◽  
U. Senthilkumar ◽  
V. Priti ◽  
G. Ravikanth ◽  
...  
Keyword(s):  

2021 ◽  
Vol 28 ◽  
Author(s):  
Vishal Kumar ◽  
Sanjeev Dhawan ◽  
Pankaj Sanjay Girase ◽  
Paul Awolade ◽  
Suraj Raosaheb Shinde ◽  
...  

: Chalcones are an interesting class of compounds endowed with a plethora of biological activities beneficial to human health. These chemo types have continued to attract increased research attention over the years; hence, numerous natural and synthetic chalcones have found with interesting anticancer activities through the inhibition of various molecular targets including ABCG2, BCRP, P-glycoprotein, 5α-reductase, Androgen receptor (AR), Histone deacetylases (HDAC), Sirtuin 1, proteasome, Vascular endothelial growth factor (VEGF), Cathepsin-K, tubulin, CDC25B phosphatase, Topoisomerase, EBV, NF-κB, mTOR, BRAF and Wnt/β-catenin. Moreover, the study of intrinsic mechanisms of action, particularly relating to specific cellular pathways and modes of engagement with molecular targets, may help medicinal chemists to develop a more effective, selective, and cost-effective chalcone-based anticancer drugs. This review, therefore, sheds light on the effect of structural variations on the anticancer potency of chalcone hybrids reported in 2018-2019 alongside their mechanism of action, molecular targets, and potential impacts on effective cancer chemotherapy.


2020 ◽  
pp. 527-594
Author(s):  
Aurelio López-Malo ◽  
Stella M. Alzamora ◽  
María J. Paris ◽  
Leonor Lastra-Vargas ◽  
María Bernarda Coronel ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5938
Author(s):  
Jaehoon Sim ◽  
Eunbin Jang ◽  
Hyun Jin Kim ◽  
Hongjun Jeon

Pladienolides, an emerging class of naturally occurring spliceosome modulators, exhibit interesting structural features, such as highly substituted 12-membered macrocycles and epoxide-containing diene side chains. The potential of pladienolides as anti-cancer agents is confirmed by H3B-8800, a synthetic analog of this natural product class, which is currently under Phase I clinical trials. Since its isolation in 2004 and the first total synthesis in 2007, a dozen total syntheses and synthetic approaches toward the pladienolide class have been reported to date. This review focuses on the eight completed total syntheses of naturally occurring pladienolides or their synthetic analogs, in addition to a synthetic approach to the main framework of the natural product.


2018 ◽  
Vol 422 ◽  
pp. 1-8 ◽  
Author(s):  
Dorothy H.J. Cheong ◽  
Frank Arfuso ◽  
Gautam Sethi ◽  
Lingzhi Wang ◽  
Kam Man Hui ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii64-ii64
Author(s):  
Hassan Azari ◽  
Nasser Nassiri Koopaei ◽  
Mohammad-Zaman Nouri ◽  
Jesse D Hall ◽  
Nancy D Denslow ◽  
...  

Abstract INTRODUCTION Extracellular vesicles (EVs) have been harvested from many plant sources, some of which have anti-cancer effects and some could be used as therapeutic nanodelivery vectors. Hemp plant is a natural source of cannabinoids, of which delta 9-tetrahydroxicannabinol (THC) and cannabidiol (CBD) have proven anti-cancer proprieties. HYPOTHESIS We hypothesized that hemp EVs are enriched in cannabinoids and their application will reduce glioblastoma (GBM) tumor progression. APPROACH EVs were isolated from the hemp plant using ultracentrifugation. Nanotracking analysis, electron microscopy and liquid chromatography tandem mass spectrometry (LC-MS/MS) were utilized to characterize EVs. GBM cell lines were cultured in the neuropshere assay to evaluate hemp EVs anti-glioma effects. Fluorescent-labelled EVs were used to evaluate their brain tissue distribution in orthotopic patient-derived GBM xenografts. RESULTS Hemp EVs have a median diameter of 112.6nm with a typical lipid-bilayer structure. LC-MS/MS have shown that while cannabidiolic, cannabigerolic, and tetrahydroxicannabinolic acids represent 69.1 ± 2.1%, 19.1 ± 1.6%, 6.5 ± 0.54% of the total cannabinoids in hemp EVs, CBD and THC only make 4.75 ± 0.26%, and 0.5 ± 0.3%. Hemp EVs are potent anti-glioma agents with a 7-day LD-50 of 1.04µM and 2.4µM [based on EVs total cannabinoid content] for KR-158 and L0 GBM lines, respectively. Compared to the vehicle, overnight incubation of L0 cells with 1µM hemp EVs significantly reduced GBM cell migration (630.3 ± 61.43 vs 143.7 ± 8.7). Intranasal administration of hemp EVs led to a widespread distribution in tumor bearing brain including GBM tumor core. CONCLUSION Based on these results, hemp EVs with enriched cannabinoid content exert antiglioma effect in-vitro and when delivered intranasally, are widely distributed throughout the brain and within the tumor of PDX animals. Further experiments are ongoing to address the impact of nasally-delivered hemp EVs on tumor progression and compare to the application of purified acidic cannabinoids.


Sign in / Sign up

Export Citation Format

Share Document