Antidiabetic properties of dietary chrysin: a cellular mechanism review

Author(s):  
Rita Marleta Dewi ◽  
Megawati Megawati ◽  
Lucia Dwi Antika

: Diabetes mellitus is the most common chronic metabolic disorder and is considered one of the leading causes of morbidity and mortality. The improperly-treated chronic hyperglycemia of diabetes has been related to several long-term complications and multiple organ failures, including nephropathy, which can lead to kidney failure, retinopathy with the potential loss of vision, and cardiovascular symptoms. Current commercially available synthetic glucose-lowering agents have been reported to have several adverse effects. Therefore, the search for alternative remedies such as medicinal plants and their active compounds have attracted attention. Chrysin is an active flavonoid that exists widely in various plants and diets and has been reported to possess pharmacological properties, including antidiabetic activity. Many studies have been conducted to characterize the antidiabetic of chrysin, as well as its potential pathways, in in vitro and in vivo experiments. Chrysin has shown promise as an antidiabetic agent in animal studies, thus, demonstrating its potential to be developed as an antidiabetic drug. This review discussed the antidiabetic action of chrysin and its mechanisms, including targeting different mechanisms such as stimulation of insulin signaling, blockage of endoplasmic reticulum stress and oxidative damage, promotion of skeletal glucose uptake, as well as modulation of apoptosis and autophagy signaling. Additionally, this review would be useful for further studies regarding the mechanism of work of plant derived-compound as a potential antidiabetic agent.

2018 ◽  
Vol 69 (3) ◽  
pp. 731-734
Author(s):  
Alin Constantin Pinzariu ◽  
Teodor Oboroceanu ◽  
Florin Zugun Eloae ◽  
Ioana Hristov ◽  
Victor Vlad Costan ◽  
...  

The age-associated adiposity and the effect of long-term vitamin D was studied in vitamin D deficient rats. In in vivo experiments, the influence of a 9 months of vitamin D treatment (weekly oral gavage with 0.125 mg vitamin D3 (5000 IU)/100g body weight) on the adipocyte precursors from the omental adipose tissue was examinated. In in vitro experiment, rat adipose-derived mesenchymal stromal/stem cells (ASCs) were induced to differentiate into adipocytes in the presence or absence of 25(OH)D3 (0.25, 25, and 2500 nmol/L). ASCs derived from vitamin D-treated animals showed an increase adipogenic potential as compared to vitamin D-deficient rats. The addition of 25(OH)D3 inhibits the adipocyte differentiation and lipid deposition in a dose dependent manner.


Author(s):  
Palak Tiwari ◽  
Nathiya R ◽  
Gayathri Mahalingam

Objective- The aim was to study in vitro anti diabetic activity of endophytic fungi isolated from Ficus Religiosa.Method- The explants (leaves and stem) were processed on the potato dextrose media nine colonies was found and colony frequency was calculated. All the colonies were transferred onto potato dextrose broth and incubated for 21 days. The crude was extracted using three solvents petroleum ether (0.1), diethyl ether (2.8) and ethyl acetate (4.4). Three assays were performed to determine in vitro anti diabetic activity of crude extract (α-amylase inhibition assay, α-glucosidase inhibition assay and glucose diffusion assay) and the % of inhibition by crude and standard acarbose was calculated with standard error mean.Results- The endophytic fungi shows the highest % of inhibition for α-amylase inhibition assay (91 % ± 0.06), α-glucosidase inhibition assay (42% ± 0.01).Conclusion-The results indicates that the hypoglycemic activity of the endophytic crude extract has been proved, hence further studies are focused on to isolate and purify the bioactive compounds and test for in vivo animal studies to confirm the anti diabetic activity.Keywords: Endophytic fungi, Antidiabetic activity, α-amylase, α-glucosidase.


2020 ◽  
Vol 21 (11) ◽  
pp. 3956 ◽  
Author(s):  
Tripti Khare ◽  
Sushesh Srivatsa Palakurthi ◽  
Brijesh M. Shah ◽  
Srinath Palakurthi ◽  
Sharad Khare

Many synthetic drugs and monoclonal antibodies are currently in use to treat Inflammatory Bowel Disease (IBD). However, they all are implicated in causing severe side effects and long-term use results in many complications. Numerous in vitro and in vivo experiments demonstrate that phytochemicals and natural macromolecules from plants and animals reduce IBD-related complications with encouraging results. Additionally, many of them modify enzymatic activity, alleviate oxidative stress, and downregulate pro-inflammatory transcriptional factors and cytokine secretion. Translational significance of natural nanomedicine and strategies to investigate future natural product-based nanomedicine is discussed. Our focus in this review is to summarize the use of phytochemicals and macromolecules encapsulated in nanoparticles for the treatment of IBD and IBD-associated colorectal cancer.


Author(s):  
Ana M. Džamić ◽  
Jelena S. Matejić

: The beneficial effect of plants in treating diabetes is not only well-known in traditional medicine but also confirmed in numerous scientific studies. The basic platform for testing the potential antidiabetic activity of traditionally known plants and their bioactive compounds is a set of in vitro, in vivo experiments, clinical trials and molecular docking studies. Basic assays usually measure enzyme inhibitory activity (α-amylase and α-glucosidase) and other aspects related to diabetes mellitus disease. Recently, the use of plant-derived compounds has proven useful in treating diabetes and reducing complications resulting from high blood sugar levels. The main goal is to establish an action mechanism of plant extracts or active compounds to find new antidiabetic drugs with less toxicological properties. This work aims to collect data and discuss the newest results in the area of plant extracts, compounds and antidiabetic effects using in vitro, in vivo and in silico models. The data covered in this review include plant extracts, polyphenols, terpenoids, saponins, phytosterols, and other bioactive compounds, with some of the investigated plants being less known. Isolation of new compounds might be a plentiful source for treatment and prevention of diabetes mellitus. Clinical trials with adequate monitoring give the best results of plants' product efficacy and safety. Many studies give us the confirmation for importance of patent and use medicinal herbs in the treatment of diabetes.


1998 ◽  
Vol 158 (2) ◽  
pp. 205-211 ◽  
Author(s):  
F Bertuzzi ◽  
K Saccomanno ◽  
C Socci ◽  
AM Davalli ◽  
MV Taglietti ◽  
...  

The aim of this study was to determine the effect of long-term in vitro exposure to high glucose on the release and content of proinsulin and insulin in human islets. After 48 h culture in CMRL medium at 5.5 mM (control islets) and 16.7 mM glucose (experimental islets), islets were perifused and acutely stimulated with 16.7 mM glucose, followed by 3.3 mM glucose. Compared with control islets, experimental islets showed a higher basal release of true insulin and proinsulin-like-molecules (PLM), with no increase of true insulin and PLM release in response to 16.7 mM glucose, and a paradoxical true insulin release in response to 3.3 mM glucose; the PLM/total insulin ratio increased significantly after 16.7 mM glucose. Moreover these islets showed a decreased true insulin content and an increased PLM/total insulin ratio. Quantitative ultrastructural analysis of granules, supported by double gold immunostaining with monoclonal antibodies against proinsulin and insulin, showed an increased proinsulin to insulin ratio in beta-cells from experimental islets. These data support in vitro what was recently shown in vivo, and further confirm that culture in high glucose is a useful tool to mimic the effect of in vivo chronic hyperglycemia on human beta-cell function.


2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


1985 ◽  
Vol 110 (3) ◽  
pp. 329-337 ◽  
Author(s):  
G. A. Schuiling ◽  
H. Moes ◽  
T. R. Koiter

Abstract. The effect of pretreatment in vivo with oestradiol benzoate on in vitro secretion of LH and FSH was studied in long-term ovariectomized (OVX) rats both at the end of a 5-day continuous in vivo pretreatment with LRH and 4-days after cessation of such LRH pretreatment. Rats were on day 0 sc implanted with osmotic minipumps which released LRH at the rate of 250 ng/h. Control rats were implanted with a piece of silicone elastomer with the dimensions of a minipump. On days 2 and 4 the rats were injected with either 3 μg EB or with oil. On day 5 part of the rats were decapitated and the in vitro autonomous (i.e. non-LRH-stimulated) and 'supra-maximally' LRHstimulated release of LH and FSH was studied using a perifusion system. From other rats the minipumps were removed on day 5 and perifusion was performed on day 9. On the 5th day of the in vivo LRH pretreatment the pituitary LH/FSH stores were partially depleted; the pituitaries of the EB-treated rats more so than those of the oil-injected rats. EB alone had no significant effect on the content of the pituitary LH- and FSH stores. On day 9, i.e. 4 days after removal of the minipumps, the pituitary LH and FSH contents had increased in both the oil- and the EB injected rats, but had not yet recovered to control values. In rats not subjected to the 5-days pretreatment with LRH EB had a positive effect on the supra-maximally LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. EB had no effect on the non-stimulated secretion of FSH. After 5 days of in vivo pretreatment with LRH only, the in vitro non-stimulated and supra-maximally LRH-stimulated secretion of both LH and FSH were strongly impaired, the effect correlating well with the LRH-induced depletion of the pituitary LH/FSH stores. In such LRH-pretreated rats EB had on day 5 a negative effect on the (already depressed) LRH-stimulated secretion of LH (not on that of FSH). EB had no effect on the non-stimulated LH/FSH secretion. It could be demonstrated that the negative effect of the combined LRH/EB pretreatment was mainly due to the depressing effect of this treatment on the pituitary LH and FSH stores: the effect of oestradiol on the pituitary LRH-responsiveness (release as related to pituitary gonadotrophin content) remained positive. In LRH-pretreated rats, however, this positive effect of EB was smaller than in rats not pretreated with LRH. Four days after removal of the minipumps there was again a positive effect of EB on the LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. The positive effect of EB on the pituitary LRH-responsiveness was as strong as in rats which had not been exposed to exogenous LRH. The non-stimulated secretion of FSH was again not affected by EB. The results demonstrate that the effect of EB on the oestrogen-sensitive components of gonadotrophin secretion consists of two components: an effect on the pituitary LRH-responsiveness proper, and an effect on the pituitary LH/FSH stores. The magnitude of the effect of EB on the LRH-responsiveness is LRH dependent: it is very weak (almost zero) in LRH-pretreated rats, but strong in rats not exposed to LRH as well as in rats of which the LRH-pretreatment was stopped 4 days previously. Similarly, the effect of EB on the pituitary LH and FSH stores is LRH-dependent: in the absence of LRH, EB has no influence on the contents of these stores, but EB can potentiate the depleting effect of LRH on the LH/FSH-stores. Also this effect disappear after cessation of the LRH-pretreatment.


Author(s):  
Н.В. Белобородова ◽  
В.В. Мороз ◽  
А.Ю. Бедова

Интеграция метаболизма макроорганизма и его микробиоты, обеспечивающая в норме симбиоз и саногенез, нарушается при заболеваниях, травме, критическом состоянии, и вектор взаимодействия может изменяться в пользу прокариотов по принципу «метаболиты бактерий - против хозяина». Анализ литературы показал, что, с одной стороны, имеется живой интерес к ароматическим микробным метаболитам, с другой - отсутствует четкое представление об их роли в организме человека. Публикации, касающиеся ряда ароматических микробных метаболитов (фенилкарбоновых кислот, ФКК), как правило, не связаны между собой по тематике и направлены на решение тех или иных прикладных задач в разных областях биологии и медицины. Цель обзора - анализ информации о происхождении, биологических эффектах ФКК в экспериментах in vitro и in vivo , и клинических наблюдениях. Обобщая результаты приведенных в обзоре исследований на клеточном, субклеточном и молекулярном уровнях, логично предположить участие ароматических микробных метаболитов в патогенезе полиорганной недостаточности при сепсисе. Наиболее перспективным для раскрытия роли ароматических микробных метаболитов представляется изучение механизмов вторичной почечной недостаточности и септической энцефалопатии. Важным направлением для будущих исследований является изучение влияния продуктов микробной биодеградации ароматических соединений на развитие диссеминированного внутрисосудистого свертывания крови, артериальной гипотензии и септического шока. Результаты дальнейших исследований будут иметь не только фундаментальное значение, но и обогатят практическую медицину новыми диагностическими и лечебными технологиями. Significant increases in blood concentrations of some aromatic metabolites (phenylcarboxylic acids, PhCAs) in patients with sepsis have been previously shown. Enhanced bacterial biodegradation of aromatic compounds has been demonstrated to considerably contribute to this process. Integration of macroorganism metabolism and its microbiota, which provides normal symbiosis and sanogenesis, is disturbed in diseases, trauma, and critical conditions. Direction of this interaction may change in favor of prokaryotes according to the principle, “bacterial metabolites are against the host”. Analysis of literature showed a particular interest of many investigators to aromatic microbial metabolites. However, there is no clear understanding of their role in the human body. Publications on PhCAs are generally not thematically interrelated and usually focus on solving applied tasks in different fields of biology and medicine. The aim of this work was to consolidate existing information about origin and biological effects of PhCAs in in vitro / in vivo experiments and some clinical findings. The presented summary of reported data from studies performed at cellular, sub-cellular, and molecular levels suggests participation of aromatic microbial metabolites in the pathogenesis of multiple organ failure in sepsis. Studying mechanisms of secondary renal failure and septic encephalopathy is most promising for discovering the function of aromatic microbial metabolites. Effects of microbial biodegradation products of aromatic substances on development of disseminated intravascular coagulation, hypotension, and septic shock are an important challenge for future studies. Results of further investigations will be not only fundamental, but will also enrich medical practice with new diagnostic and therapeutic technologies.


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


Sign in / Sign up

Export Citation Format

Share Document