Recent updates on Synthetic Strategies and Biological Potential of 1,3,4-oxadiazole: Review

2021 ◽  
Vol 19 ◽  
Author(s):  
Sunita Kumari ◽  
Rajnish Kumar ◽  
Avijit Mazumder ◽  
Salahuddin ◽  
Shivani Saxena ◽  
...  

Abstract: Among the large variety of nitrogen and oxygen-containing heterocycles, 1,3,4-oxadiazole, the scaffold, has attracted considerable attention owing to its ability to show an extensive range of pharmacological actions. According to literature investigations, prepared 1,3,4-oxadiazole and its derivative are pharmacologically significant and consist of a variety of activities, such as anticonvulsant, anticancer, antioxidant, anti-inflammatory, antibacterial, antidiabetic, etc. These heterocyclics are formed mainly by the cyclization reactions of various reactants under diverse reaction circumstances. Therefore, significant efforts of organic chemists have been directed towards the synthesis of new drug candidates containing 1,3,4-oxadiazole subunits connected to an established potential pharmacophore to improve the efficacy and potency. This article aims to highlight recent publications on the various synthesis techniques of 1,3,4-oxadiazole and related compounds over the previous ten years (2011–2021). The purpose of this review is to help researchers by summarizing several synthetic strategies for synthesizing oxadiazole.

Author(s):  
Sunita Kumari ◽  
Rajnish Kumar ◽  
Avijit Mazumder ◽  
Salahuddin ◽  
Shivani Saxena ◽  
...  

Abstract: Among the large variety of nitrogen and oxygen heterocycles, 1,3,4-oxadiazole, the scaffold, has attracted considerable attention owing to its ability to showing an extensive range of pharmacological actions. Therefore, significant efforts of organic chemists have been directed towards the construction of new drug candidates containing 1,3,4-oxadiazole subunits connected to a known pharmaceutical or a potential pharmacophore. This digest highlights recent publications on the various synthesis techniques of 1,3,4-oxadiazole and related compounds over the previous ten years (2011–2021). The purpose of this review is to learn about several ways for synthesizing oxadiazole. These heterocyclics are formed mainly by the cyclization reactions of various reactants under diverse circumstances. According to the literature investigations, they were given a high priority for their pharmacological significance, such as anticonvulsant, anticancer, antioxidant, anti-inflammatory, antibacterial, antidiabetic, etc.


2018 ◽  
Vol 25 (20) ◽  
pp. 2304-2328 ◽  
Author(s):  
Lishu Wang ◽  
Jungfeng Wang ◽  
Juan Liu ◽  
Yonghong Liu

Due to the importance of nature as a source of new drug candidates, the purpose of this article is to emphasize the marine natural products, which exhibit antitubercular activity, published between January 2000 and May 2016, with 138 quotations to 250 compounds obtained from marine resources. These metabolites are organized by chemical constitution and named as simple alkyl lipids derivatives, aromatics derivatives, peptides, alkaloids, terpenoids, steroids, macrolides, and polycyclic polyketides.


2019 ◽  
Vol 22 (8) ◽  
pp. 509-520
Author(s):  
Cauê B. Scarim ◽  
Chung M. Chin

Background: In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays. Objective: Current approaches to drug discovery for Chagas disease. Method: This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases. Results: Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease. Conclusion: There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.


2019 ◽  
Vol 16 (10) ◽  
pp. 1157-1166
Author(s):  
Rodrigo César da Silva ◽  
Fabiano Veiga ◽  
Fabiana Cardoso Vilela ◽  
André Victor Pereira ◽  
Thayssa Tavares da Silva Cunha ◽  
...  

Background: : A new series of O-benzyloximes derived from eugenol was synthesized and was evaluated for its antinociceptive and anti-inflammatory properties. Methods: : The target compounds were obtained in good global 25-28% yields over 6 steps, which led us to identify compounds (Z)-5,6-dimethoxy-2,2-dimethyl-2,3-dihydro-1H-inden-1-one-O-(4- (methylthio)benzyloxime (8b), (Z)-5,6-dimethoxy-2,2-dimethyl-2,3-dihydro-1H-inden-1-one-O-4- bromobenzyloxime (8d) and (Z)-5,6-dimethoxy-2,2-dimethyl-2,3-dihydro-1H-inden-1-one-O-4- (methylsulfonyl)benzyloxime (8f) as promising bioactive prototypes. Results:: These compounds have significant analgesic and anti-inflammatory effects, as evidenced by formalin-induced mice paw edema and carrageenan-induced mice paw edema tests. In the formalin test, compounds 8b and 8f evidenced both anti-inflammatory and direct analgesic activities and in the carrageenan-induced paw edema, with compounds 8c, 8d, and 8f showing the best inhibitory effects, exceeding the standard drugs indomethacin and celecoxib. Conclusion: : Molecular docking studies have provided additional evidence that the pharmacological profile of these compounds may be related to inhibition of COX enzymes, with slight preference for COX-1. These results led us to identify the new O-benzyloxime ethers 8b, 8d and 8f as orally bioactive prototypes, with a novel structural pattern capable of being explored in further studies aiming at their optimization and development as drug candidates.


2020 ◽  
Vol 16 (2) ◽  
pp. 190-195 ◽  
Author(s):  
Süleyman Ediz ◽  
Murat Cancan

Background: Reckoning molecular topological indices of drug structures gives the data about the underlying topology of these drug structures. Novel anticancer drugs have been leading by researchers to produce ideal drugs. Materials and Methods: Pharmacological properties of these new drug agents explored by utilizing simulation strategies. Topological indices additionally have been utilized to research pharmacological properties of some drug structures. Novel alkylating agents based anticancer drug candidates and ve-degree molecular topological indices have been introduced recently. Results and Conclusion: In this study we calculate ve-degree atom-bond connectivity, harmonic, geometric-arithmetic and sum-connectivity molecular topological indices for the newly defined alkylating agents based dual-target anticancer drug candidates.


Lab on a Chip ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 1527-1539
Author(s):  
Xiaoou Ren ◽  
Anthony E. Getschman ◽  
Samuel Hwang ◽  
Brian F. Volkman ◽  
Thomas Klonisch ◽  
...  

Our skin-on-chip (SoC) model uniquely enabled quantitative studies of transendothelial and transepithelial migration of human T lymphocytes under mimicked inflammatory skin conditions and was used to test new drug candidates.


2021 ◽  
Vol 14 (7) ◽  
pp. 692
Author(s):  
Ryldene Marques Duarte da Cruz ◽  
Francisco Jaime Bezerra Mendonça-Junior ◽  
Natália Barbosa de Mélo ◽  
Luciana Scotti ◽  
Rodrigo Santos Aquino de Araújo ◽  
...  

Rheumatoid arthritis, arthrosis and gout, among other chronic inflammatory diseases are public health problems and represent major therapeutic challenges. Non-steroidal anti-inflammatory drugs (NSAIDs) are the most prescribed clinical treatments, despite their severe side effects and their exclusive action in improving symptoms, without effectively promoting the cure. However, recent advances in the fields of pharmacology, medicinal chemistry, and chemoinformatics have provided valuable information and opportunities for development of new anti-inflammatory drug candidates. For drug design and discovery, thiophene derivatives are privileged structures. Thiophene-based compounds, like the commercial drugs Tinoridine and Tiaprofenic acid, are known for their anti-inflammatory properties. The present review provides an update on the role of thiophene-based derivatives in inflammation. Studies on mechanisms of action, interactions with receptors (especially against cyclooxygenase (COX) and lipoxygenase (LOX)), and structure-activity relationships are also presented and discussed. The results demonstrate the importance of thiophene-based compounds as privileged structures for the design and discovery of novel anti-inflammatory agents. The studies reveal important structural characteristics. The presence of carboxylic acids, esters, amines, and amides, as well as methyl and methoxy groups, has been frequently described, and highlights the importance of these groups for anti-inflammatory activity and biological target recognition, especially for inhibition of COX and LOX enzymes.


Planta Medica ◽  
2021 ◽  
Author(s):  
Laura Grauso ◽  
Bruna de Falco ◽  
Giuseppe Lucariello ◽  
Raffaele Capasso ◽  
Virginia Lanzotti

Abstract Euphorbia myrsinites is one of the oldest spurges described and used in folk medicine. It is characterized by blue-grey stems similar to myrtle, and it is spread in the Mediterranean region, Asia, and the USA. Chemical analysis of E. myrsinites collected in Turkey afforded the isolation of 4 diterpenes based on the so-called myrsinane skeleton being tetraesters of the tetracyclic diterpene alcohol myrsinol. In this study, the phytochemical analysis of this species collected in Italy has been undertaken to afford the isolation of a new atisane diterpene, named myrsatisane, 3 ingenol derivatives, along with the 4 tetraester derivatives previously found. A triterpene compound based on the euphane skeleton has also been isolated. Structural elucidation of the new myrsatisane was based on spectroscopic techniques, including HR-MS and 1- and 2-dimensional NMR experiments. Its relative configuration was determined by NOE correlations, while absolute stereochemistry was obtained by quantum-mechanical DFT studies. While diterpenes with the atisane skeleton are relatively common in Euphorbia species, this is the first report of an atisane diterpene from E. myrsinites. All the isolated terpenes were tested for anti-inflammatory activity on J774A.1 macrophages stimulated with lipopolysaccharide by evaluation of nitrite and pro-inflammatory cytokine Il-1β levels. Among tested compounds, the 3 ingenol diterpenes exhibited a dose-dependent (0.001 – 3 µM) significant activity, thus showing their potential as anti-inflammatory drug candidates.


Author(s):  
Dinesh Kumar Patel

Background: Herbal drugs and their derived phytochemicals are valuable for human being as a source of vital component of food material and drugs. Flavonoids are naturally occurring phytochemical produced in plants through metabolisms and they are having anti-hyperlipidemia, anti-inflammatory, anti-oxidant and anti-apoptotic activity. Flavonoids have been identified in the fruits, nuts, vegetables, seeds, stem, flowers and tea. Kaempferol is a natural flavonoidal compound present in edible plants such as apples, broccoli, strawberries, beans, grapefruit, propolis and medicinal plants such as Aloe vera, Ginkgo biloba, Rosmarinus officinalis, Crocus sativus L., Hypericum perforatum L. Kaempferol have anti-oxidant, anti-inflammatory, anti-apoptotic, pro-apoptotic, cardio-protective and anti-cancer activities. Methods: Glycosides of kaempferol such as kaempferitrin also called kaempferol 3,7-dirhamnoside are known to be more abundant than their flavonoid monomers in plants. Various literature databases have been searched to collect all the scientific information of kaempferitrin in the present investigation and analyzed in order to know the therapeutic benefit and biological potential of kaempferitrin. Moreover all the information has been presented here in two broad sections i.e. pharmacological and analytical. Results: From the analysis of all the collected and presented information, it was found that kaempferitrin has potent insulin-mimetic potential and could be used for the treatment of diabetes and related complication. However, it has also shown anti-oxidant, anti-inflammatory, anti-convulsant, anti-osteoporotic, anti-depressant, anthelmintic, immunostimulatory and natriuretic properties and inhibits cell proliferation and apoptosis. Kaempferitrin also improves meat quality of broiler chickens. Conclusions: The presented information in this work will be valuable to justify the biological importance and therapeutic potential of kaempferitrin in the scientific field.


Sign in / Sign up

Export Citation Format

Share Document