Ground Penetrating Radar Algorithm to Sense the Depth of Blood Clot in Microwave Head Imaging

Author(s):  
Lalitha Kandasamy ◽  
Manjula J.

Background: Microwave imaging is one of the emerging non-invasive portable imaging techniques, which uses nonionized radiations to take a detailed view of biological tissues in the microwave frequency range. Brain stroke is an emergency caused by the interruption of the blood supply into parts of brain, leading to the loss of millions of brain cells. Imaging plays a major role in stroke diagnosis for prompt treatment. Objective: This work proposes a computationally efficient algorithm called the GPR algorithm to locate the blood clot with a size of 10 mm in microwave images. Methods: The electromagnetic waves are radiated, and backscattered reflections are received by Antipodal Vivaldi antenna with the parasitic patch (48 mm*21 mm). The received signals are converted to a planar 2D image, and the depth of the blood clot is identified from the B-scan image. The novelty of this work lies in applying the GPR algorithm for the accurate positioning of a blood clot in a multilayered head tissue. Results: The proposed system is effectively demonstrated using a 3D EM simulator and simulated results are verified in a Vector network analyzer (E8363B) with an experimental setup. Conclusion: This an alternative safe imaging modality compared to present imaging systems(CT and MRI)

Author(s):  
Oral Buyukozturk

Electromagnetic properties of hardened concrete specimens are measured over a microwave frequency range from 0.1 to 20 GHz. The experimentally obtained values provide information about the behavior of concrete and its interaction with electromagnetic waves. In addition to the frequency variation, the effect of different moisture contents on the electromagnetic properties is studied. Properties of mortar specimens and constituents of concrete, that is, coarse aggregates, sand, and cement, are also measured. An open-ended coaxial probe method is used for the measurement of real and imaginary parts of complex permittivity of concrete. The physical significance of the measured data in nondestructive testing, including penetration depth and detectability, is discussed. The results of electromagnetic property measurements indicate that the dielectric constant of dry concrete appears to be frequency independent over the range from 0.1 to 20 GHz, whereas the loss factor increases over that range. The moisture content of concrete significantly affects the dielectric constant and loss factor. The quantitative results obtained from this research will serve as a basis in applying wideband microwave imaging techniques for nondestructive testing of concrete using radar. The results can also be used for selecting the optimum combinations of radar measurement parameters for better detection.


Author(s):  
M. S. Sudakova ◽  
M. L. Vladov ◽  
M. R. Sadurtdinov

Within the ground penetrating radar bandwidth the medium is considered to be an ideal dielectric, which is not always true. Electromagnetic waves reflection coefficient conductivity dependence showed a significant role of the difference in conductivity in reflection strength. It was confirmed by physical modeling. Conductivity of geological media should be taken into account when solving direct and inverse problems, survey design planning, etc. Ground penetrating radar can be used to solve the problem of mapping of halocline or determine water contamination.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1063
Author(s):  
Antonella Castellano ◽  
Michele Bailo ◽  
Francesco Cicone ◽  
Luciano Carideo ◽  
Natale Quartuccio ◽  
...  

The accuracy of target delineation in radiation treatment (RT) planning of cerebral gliomas is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Conventional magnetic resonance imaging (MRI), including contrast-enhanced T1-weighted and fluid-attenuated inversion recovery (FLAIR) sequences, represents the current standard imaging modality for target volume delineation of gliomas. However, conventional sequences have limited capability to discriminate treatment-related changes from viable tumors, owing to the low specificity of increased blood-brain barrier permeability and peritumoral edema. Advanced physiology-based MRI techniques, such as MR spectroscopy, diffusion MRI and perfusion MRI, have been developed for the biological characterization of gliomas and may circumvent these limitations, providing additional metabolic, structural, and hemodynamic information for treatment planning and monitoring. Radionuclide imaging techniques, such as positron emission tomography (PET) with amino acid radiopharmaceuticals, are also increasingly used in the workup of primary brain tumors, and their integration in RT planning is being evaluated in specialized centers. This review focuses on the basic principles and clinical results of advanced MRI and PET imaging techniques that have promise as a complement to RT planning of gliomas.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2348
Author(s):  
Leon Riehakainen ◽  
Chiara Cavallini ◽  
Paolo Armanetti ◽  
Daniele Panetta ◽  
Davide Caramella ◽  
...  

Non-invasive longitudinal imaging of osseointegration of bone implants is essential to ensure a comprehensive, physical and biochemical understanding of the processes related to a successful implant integration and its long-term clinical outcome. This study critically reviews the present imaging techniques that may play a role to assess the initial stability, bone quality and quantity, associated tissue remodelling dependent on implanted material, implantation site (surrounding tissues and placement depth), and biomarkers that may be targeted. An updated list of biodegradable implant materials that have been reported in the literature, from metal, polymer and ceramic categories, is provided with reference to the use of specific imaging modalities (computed tomography, positron emission tomography, ultrasound, photoacoustic and magnetic resonance imaging) suitable for longitudinal and non-invasive imaging in humans. The advantages and disadvantages of the single imaging modality are discussed with a special focus on preclinical imaging for biodegradable implant research. Indeed, the investigation of a new implant commonly requires histological examination, which is invasive and does not allow longitudinal studies, thus requiring a large number of animals for preclinical testing. For this reason, an update of the multimodal and multi-parametric imaging capabilities will be here presented with a specific focus on modern biomaterial research.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jae Heon Kim ◽  
Hong J. Lee ◽  
Yun Seob Song

A reliablein vivoimaging method to localize transplanted cells and monitor their viability would enable a systematic investigation of cell therapy. Most stem cell transplantation studies have used immunohistological staining, which does not provide information about the migration of transplanted cellsin vivoin the same host. Molecular imaging visualizes targeted cells in a living host, which enables determining the biological processes occurring in transplanted stem cells. Molecular imaging with labeled nanoparticles provides the opportunity to monitor transplanted cells noninvasively without sacrifice and to repeatedly evaluate them. Among several molecular imaging techniques, magnetic resonance imaging (MRI) provides high resolution and sensitivity of transplanted cells. MRI is a powerful noninvasive imaging modality with excellent image resolution for studying cellular dynamics. Several types of nanoparticles including superparamagnetic iron oxide nanoparticles and magnetic nanoparticles have been used to magnetically label stem cells and monitor viability by MRI in the urologic field. This review focuses on the current role and limitations of MRI with labeled nanoparticles for tracking transplanted stem cells in urology.


2018 ◽  
Vol 3 (11) ◽  
pp. 73-77
Author(s):  
Aye Mint Mohamed Mostapha ◽  
Gamil Alsharahi ◽  
Abdellah Driouach

Ground penetrating radar (GPR) is a very effective tool for detecting and identifying objects below the ground surface.  based on  the propagation and reflection of high-frequency electromagnetic waves. The GPR reflection can be affected by many things like the type of objects orientation, their shapes ..ect. The purpose of this paper is to  study by simulation the effect of objects orientation in two different mediums (dry and wet sand) on the GPR signal reflection using Reflexw software which is based on a numerical method known as finite difference in time domain (FDTD).  The simulations that have been realized included a conductor  and dielectric objects. The results obtained have led us to find that the propagation path, the reflection strength and the signal form change with the change of object orientation and nature. To confirm the validity of the results, we compared them with experimental results previously published by researchers under the same conditions.


2015 ◽  
Vol 33 (Suppl. 1) ◽  
pp. 26-31
Author(s):  
Hans Herfarth ◽  
Andreas G. Schreyer

Diagnostic imaging techniques play an important role in the diagnosis and management of patients with inflammatory bowel diseases (IBDs). The approach should be guided by considerations of diagnostic accuracy, concerns about patient exposure to ionizing radiation, local expertise and tolerance of the endoscopic and/or imaging technique. In regard to the clinical diagnostic value (sensitivity, specificity and accuracy), no significant differences exist between CT and MRI for the evaluation of the extent of inflammation, stricturing, penetrating disease or extraluminal complications such as abscesses. Due to the absence of radiation exposure, MRI of the intestine is recommended as the first-line imaging modality in patients with suspected or established IBD. The focus of this review is the latest developments in MRI techniques to detect IBDs. Specifically, the use of new indices for the grading of inflammation or assessing bowel damage as well as innovative experimental approaches such as diffusion-weighted imaging or magnetization-transfer MRI to evaluate and quantify the degree of intestinal inflammation and fibrosis in stricturing Crohn's disease are discussed.


2021 ◽  
Author(s):  
Wolf-Stefan Benedix ◽  
Dirk Plettemeier ◽  
Christoph Statz ◽  
Yun Lu ◽  
Ronny Hahnel ◽  
...  

<p>The WISDOM ground-penetrating radar aboard the 2022 ESA-Roscosmos Rosalind-Franklin ExoMars Rover will probe the shallow subsurface of Oxia Planum using electromagnetic waves. A dual-polarized broadband antenna assembly transmits the WISDOM signal into the Martian subsurface and receives the return signal. This antenna assembly has been extensively tested and characterized w.r.t. the most significant antenna parameters (gain, pattern, matching). However, during the design phase, these parameters were simulated or measured without the environment, i.e., in the absence of other objects like brackets, rover vehicle, or soil. Some measurements of the rover's influence on the WISDOM data were performed during the instrument's integration.</p><p>It was shown that the rover structure and close surroundings in the near-field region of the WISDOM antenna assembly have a significant impact on the WISDOM signal and sounding performance. Hence, it is essential to include the simulations' environment, especially with varying surface and underground.</p><p>With this contribution, we outline the influences of rover and ground on the antenna's pattern and particularly on the footprint. We employ a 3D field solver with a complete system model above different soil types, i.e., subsurface materials with various combinations of permittivity and conductivity.</p>


Sign in / Sign up

Export Citation Format

Share Document