Factorial Design Optimisation of Solid Phase Extraction for Preconcentration of Parabens in Wastewater Using Ultra-High Performance Liquid Chromatography Triple Quadrupole Mass Spectrometry

2020 ◽  
Vol 16 (4) ◽  
pp. 436-446
Author(s):  
Vallerie A. Muckoya ◽  
Philiswa N. Nomngongo ◽  
Jane C. Ngila

Background: Parabens are synthetic esters used extensively as preservatives and/or bactericides in personal care personal products. Objective: Development and validation of a novel robust chemometric assisted analytical technique with superior analytical performances for the determination of ethylparaben, methylparaben and propylparaben, using simulated wastewater matrix. Methods: An automated Solid Phase Extraction (SPE) method coupled with liquid chromatographymass spectrometry was applied in this study. A gradient elution programme comprising of 0.1% formic acid in deionised water (A) and 0.1% formic acid in Methanol (B) was employed on a 100 x 2.1 mm, 3.0 μm a particle size biphenyl column. Two-level (2k) full factorial design coupled with response surface methodology was used for optimisation and investigation of SPE experimental variables that had the most significant outcome of the analytical response. Results: According to the analysis of variance (ANOVA), sample pH and eluent volume were statistically the most significant parameters. The method developed was validated for accuracy, precision, Limits of Detection (LOD) and Limit of Quantification (LOQ) and linearity. The LOD and LOQ established under those optimised conditions varied between 0.04-0.12 μgL−1 and 0.14-0.40 μgL−1 respectively. The use of matrix-matched external calibration provided extraction recoveries between 78-128% with relative standard deviations at 2-11% for two spike levels (10 and 100 μgL-1) in three different water matrices (simulated wastewater, influent and effluent water). Conclusion: The newly developed method was applied successfully to the analyses of parabens in wastewater samples at different sampling points of a wastewater treatment plant, revealing concentrations of up to 3 μgL−1.

2021 ◽  
Vol 14 ◽  
pp. 1-6
Author(s):  
Nurul Auni Zainal Abidin ◽  
Nur Sofiah Abu Kassim ◽  
Noor Hidayah Pungot

Triazine is one of the herbicides group that is widely used in agriculture that acts as an inhibitor for the growth of unwanted weeds in plants. The use of this herbicide on plants is absorbed by the soil and flows into a nearby water system. This research focused on two types of triazines, namely atrazine and cyanazine. This research aims to extract this type of triazine herbicides and to determine their concentration in water samples. It was quantified by using gas chromatography-electron capture detector (GC-ECD). Solid phase extraction (SPE) method was applied to extract herbicides from water samples. The results indicate that all the samples contained atrazine and cyanazine. Studies in the range of 0.5 - 25 mg/L achieved good linearity with good correlation of determination, r2 value of 0.9922 - 0.9982 mg/L. Relative standard deviations (RSD) for triplicate analysis of the samples were less than 10.0%. The limit of detection (LODs) and limit of quantification (LOQs) of cyanazine and atrazine were found, ranging from 3.33 – 6.67 μg/L and 11.09 – 20.10 μg/L, respectively. The recoveries of the triazine herbicides studied in water samples ranged from 82.5% to 107.6%. The developed method exhibited excellent clean-up capability and was successfully applied for determining triazine herbicide residues in water samples.


2020 ◽  
Vol 16 (4) ◽  
pp. 381-392
Author(s):  
Ayman A. Gouda ◽  
Ali H. Amin ◽  
Ibrahim S. Ali ◽  
Zakia Al Malah

Background: Cadmium (Cd2+) and lead (Pb2+) have acute and chronic effects on humans and other living organisms. In the present work, new, green and accurate dispersive micro solid-phase extraction (DμSPE) method for the separation and preconcentration of trace amounts of cadmium (Cd2+) and lead (Pb2+) ions in various food, water and tobacco samples collected from Saudi Arabia prior to its Flame Atomic Absorption Spectrometric (FAAS) determinations was developed. Methods: The proposed method was based on a combination of oxidized multiwalled carbon nanotubes (O-MWCNTs) with a new chelating agent 5-benzyl-4-[4-methoxybenzylideneamino)-4H- 1,2,4-triazole-3-thiol (BMBATT) to enrich and separate trace levels of Cd2+ and Pb2+. The effect of separation parameters was investigated. The validation of the proposed preconcentration procedure was performed using certified reference materials. Results: Analyte recovery values ranged from 95-102%, indicating that the method is highly accurate. Furthermore, precision was demonstrated by the relative standard deviation (RSD < 3.0%). The limits of detection were 0.08 and 0.1 μg L−1 for Cd2+ and Pb2+ ions, respectively. The preconcentration factor was 200. Conclusion: The proposed method was used for the estimation of Cd2+ and Pb2+ ion content in various real samples, and satisfactory results were obtained. The proposed method has high adsorption capacity, rapid adsorption equilibrium, extremely low LODs, high preconcentration factors and shortens the time of sample preparation in comparison to classical SPE.


2011 ◽  
Vol 89 (4) ◽  
pp. 517-523 ◽  
Author(s):  
Ke-Jing Huang ◽  
Cong-Hui Han ◽  
Ying-Ying Wu ◽  
Chao-Qun Han ◽  
De-Jun Niu ◽  
...  

A simple and efficient solid-phase extraction – spectrofluorimetric method has been developed to determine glutathione (GSH). Fluorescent probe N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl)iodoacetamide (BODIPY Fl-C1-IA) was used as the derivatization reagent. The procedure was based on a BODIPY Fl-C1-IA selective reaction with GSH to form the highly fluorescent product BODIPY Fl-C1-IA–GSH, using a solid-phase extraction column and spectrofluorimetric determination. The variables affecting analytical performance were studied and optimized. The calibration graph using the preconcentration system for GSH was linear over the range of 1–200 nmol/L with a limit of detection of 0.05 nmol/L (signal-to-noise ratio = 3). The relative standard deviation for six replicate determinations of GSH at the 100 nmol/L concentration level was 3.9%. The method was applied to water samples and average recoveries between 87.5% and 111.5% were obtained for spiked samples.


2008 ◽  
Vol 3 ◽  
pp. ACI.S396 ◽  
Author(s):  
Helena Gonzalez ◽  
Carl-Eric Jacobson ◽  
Ann-Marie Wennberg ◽  
Olle Larkö ◽  
Anne Farbrot

Background Benzophenone-3 (BZ-3) is a common ultraviolet (UV) absorbing compound in sunscreens. It is the most bioavailable species of all UV-absorbing compounds after topical application and can be found in plasma and urine. Objectives The aim of this study was to develop a reverse-phase high performance liquid chromatography (HPLC) method for determining the amounts BZ-3 and its metabolite 2,4-dihydroxybenzophenone (DHB) in human urine. The method had to be suitable for handling a large number of samples. It also had to be rapid and simple, but still sensitive, accurate and reproducible. The assay was applied to study the urinary excretion pattern after repeated whole-body applications of a commercial sunscreen, containing 4% BZ-3, to 25 healthy volunteers. Methods Each sample was analyzed with regard to both conjugated/non-conjugated BZ-3 and conjugated/non-conjugated DHB, since both BZ-3 and DHB are extensively conjugated in the body. Solid-phase extraction (SPE) with C8 columns was followed by reverse-phase HPLC. For separation a Genesis C18 column was used with an acethonitrile-water mobile phase and the UV-detector was set at 287 nm. Results The assay was linear r 2 > 0.99, with detection limits for BZ-3 and DHB of 0.01 µmol L-1 and 0.16 µmol L-1 respectively. Relative standard deviation (RSD) was less than 10% for BZ-3 and less than 13% for DHB. The excretion pattern varied among the human volunteers; we discerned different patterns among the individuals. Conclusions The reverse-phase HPLC assay and extraction procedures developed are suitable for use when a large number of samples need to be analyzed and the method fulfilled our objectives. The differences in excretion pattern may be due to differences in enzyme activity but further studies, especially about genetic polymorphism, need to be performed to verify this finding.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6163
Author(s):  
Aree Choodum ◽  
Nareumon Lamthornkit ◽  
Chanita Boonkanon ◽  
Tarawee Taweekarn ◽  
Kharittha Phatthanawiwat ◽  
...  

Benzo(a)pyrene (BaP) has been recognized as a marker for the detection of carcinogenic polycyclic aromatic hydrocarbons. In this work, a novel monolithic solid-phase extraction (SPE) sorbent based on graphene oxide nanoparticles (GO) in starch-based cryogel composite (GO-Cry) was successfully prepared for BaP analysis. Rice flour and tapioca starch (gel precursors) were gelatinized in limewater (cross-linker) under alkaline conditions before addition of GO (filler) that can increase the ability to extract BaP up to 2.6-fold. BaP analysis had a linear range of 10 to 1000 µgL−1 with good linearity (R2 = 0.9971) and high sensitivity (4.1 ± 0.1 a.u./(µgL−1)). The limit of detection and limit of quantification were 4.21 ± 0.06 and 14.04 ± 0.19 µgL−1, respectively, with excellent precision (0.17 to 2.45%RSD). The accuracy in terms of recovery from spiked samples was in the range of 84 to 110% with no significant difference to a C18 cartridge. GO-Cry can be reproducibly prepared with 2.8%RSD from 4 lots and can be reused at least 10 times, which not only helps reduce the analysis costs (~0.41USD per analysis), but also reduces the resultant waste to the environment.


2008 ◽  
Vol 91 (6) ◽  
pp. 1459-1466 ◽  
Author(s):  
Ji-Ye Hu ◽  
Yu-Chao Zhang ◽  
Hai Yan

Abstract A method for high-performance liquid chromatographic (HPLC) determination of flumorph residues in cucumber, tomato, soil, and natural water was developed and validated. Primary secondary amine or octadecylsilyl (C18) solid-phase extraction cartridges were used for sample preparation. Reversed-phase HPLC with UV detection was used for separation and quantification of the pesticide. The combined cleanup and chromatographic method steps were sensitive and reliable for simultaneous determination of residues of the 2 isomers of flumorph in the studied samples. This method is characterized by recovery &gt;97.9, coefficient of variation &lt;6.2, and limit of quantification of 0.01 mg/kg, in agreement with directives for method validation in residue analysis. Flumorph residues in the samples were further confirmed by HPLC/mass spectrometry. The proposed method is fast, easy to perform, and could be used for monitoring of pesticide residues.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 690 ◽  
Author(s):  
Providencia González-Hernández ◽  
Ana Lago ◽  
Jorge Pasán ◽  
Catalina Ruiz-Pérez ◽  
Juan Ayala ◽  
...  

The pillared-layer Zn-triazolate metal-organic framework (CIM-81) was synthesized, characterized, and used for the first time as a sorbent in a dispersive micro-solid phase extraction method. The method involves the determination of a variety of personal care products in wastewaters, including four preservatives, four UV-filters, and one disinfectant, in combination with ultra-high performance liquid chromatography and UV detection. The CIM-81 MOF, constructed with an interesting mixed-ligand synthetic strategy, demonstrated a better extraction performance than other widely used MOFs in D-µSPE such as UiO-66, HKUST-1, and MIL-53(Al). The optimization of the method included a screening design followed by a Doehlert design. Optimum conditions required 10 mg of CIM-81 MOF in 10 mL of the aqueous sample at a pH of 5, 1 min of agitation by vortex and 3 min of centrifugation in the extraction step; and 1.2 mL of methanol and 4 min of vortex in the desorption step, followed by filtration, evaporation and reconstitution with 100 µL of the initial chromatographic mobile phase. The entire D-µSPE-UHPLC-UV method presented limits of detection down to 0.5 ng·mL−1; intra-day and inter-day precision values for the lowest concentration level (15 ng·mL−1)-as a relative standard deviation (in %)-lower than 8.7 and 13%, respectively; average relative recovery values of 115%; and enrichment factors ranging from ~3.6 to ~34. The reuse of the CIM-81 material was assessed not only in terms of maintaining the analytical performance but also in terms of its crystalline stability.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Eman Alzahrani

In the present study, preparation of CuBTC-monopol monoliths for use within the microchip solid phase extraction was undertaken through a 20-min UV lamp-assisted polymerization for 2,2-dimethoxy-2-phenyl acetophenone (DMPA), butyl methacrylate (BMA), and ethylene dimethacrylate (EDMA) alongside inclusion of the porogenic solvent system (1-propanol and methanol (1 : 1)). The resultant coating underwent coating using CuBTC nanocrystals in ethanolic solution of ethanolic solution of 1,3,5-benzenetricarboxylic acid (H3BTC, 10 mM) and 10 mM copper(II) acetate Cu(CH3COO)2. This paper reports enhanced extraction, characterization, and synthesis studies for porous CuBTC metal organic frameworks that are marked by different methods including SEM/EDAX analysis, atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy (FT-IR). The evaluation of the microchip’s performance was undertaken as sorbent through retrieval of six toxic dyes (anionic and cationic dyes). Various parameters (desorption and extraction step flow rates, volume of desorption solvent, volume of sample, and type of desorption solvent) were examined to optimize dye extraction using fabricated microchips. The result indicated that CuBTC-monopol monoliths were permeable with the ability of removing impurities and attained high toxic dye extraction recovery (83.4–99.9%). The assessment of reproducibility for chip-to-chip was undertaken by computing the relative standard deviations (RSDs) of the six dyes in extraction. The interbatch and intrabatch RSDs ranged between 3.8 and 6.9% and 2.3 and 4.8%. Such features showed that fabricated CuBTC-monopol monolithic disk polycarbonate microchips have the potential of extracting toxic dyes that could be utilized for treating wastewater.


2003 ◽  
Vol 86 (6) ◽  
pp. 1160-1163 ◽  
Author(s):  
Thomas A Eisele ◽  
Midori Z Gibson

Abstract A syringe-cartridge solid-phase extraction (SPE) method was developed for determination of patulin in apple juice. A 2.5 mL portion of test sample was passed through a conditioned macroporous SPE cartridge and washed with 2 mL 1% sodium bicarbonate followed by 2 mL 1% acetic acid. Patulin was eluted with 1 mL 10% ethyl acetate in ethyl ether and determined by reversed-phase liquid chromatography using a mobile phase consisting of 81% acetonitrile, 9% water, and 10% 0.05M potassium phosphate buffer, pH 2.4. Recoveries averaged 92% and the relative standard deviation was 8.0% in test samples spiked with 50 ng/mL patulin. The method appears to be applicable for monitoring apple juice samples to meet the U.S. Food and Drug Administration compliance action level of 50 μg/kg in an industrial quality assurance laboratory environment.


1998 ◽  
Vol 81 (6) ◽  
pp. 1121-1127 ◽  
Author(s):  
Jeffrey A Hurlbut ◽  
Justin R Carr ◽  
Emma R Singleton ◽  
Kent C Faul ◽  
Mark R Madson ◽  
...  

Abstract A solid-phase extraction (SPE) cleanup and a liquid chromatographic (LC) method with UV detection is presented for analysis of up to 7 ephedrine alkaloids in herbal products. Alkaloids from herbal products are extracted with acidified buffer, isolated on a propylsulfonic acid SPE column, eluted with a high-ionic-strength buffer, and separated by LC with detection at 255 nm. LC separation is performed by isocratic elution on a YMC phenyl column with 0.1 M sodium acetate-acetic acid (pH = 4.8) containing triethyl-amine and 2% acetonitrile. Ephedrine alkaloids are completely separated in 15 min. Average recovery of 5 common alkaloids from 3 spiked matrixes is 90%, with an average relative standard deviation (RSD) of 4.4% for alkaloid spikes between 0.5 and 16 mg/g. Average quantitation of ephedrine and pseudoephedrine from 6 herbal products is 97% of declared label claims, and average quantitation of synephrine from an herbal dietary product is 85% of label claim (RSD, 3.2%). Recoveries of synephrine, norephedrine, ephedrine, pseudoephedrine, N-methylephedrine, and N-methylpseudoephedrine spiked in 4 herbal products averaged 95%. Results of ruggedness testing and of a second laboratory validation of the procedure are also presented.


Sign in / Sign up

Export Citation Format

Share Document