Application of Gas Chromatography for the Analysis of Residual Solvents in Transdermal Drug Delivery Systems (TDS)

2021 ◽  
Vol 18 ◽  
Author(s):  
Diaa Shakleya ◽  
Sonal Mazumder ◽  
Naresh Pavurala ◽  
Sara Mattson ◽  
Patrick J. Faustino

Background: Transdermal drug delivery systems (TDS) are widely used to deliver a number of different drug therapeutics. The design delivery can be impacted by excipients and, more broadly, organic solvents. Organic or residual solvents are routinely monitored due to safety concerns. However, there is little information on the mechanical properties and delivery performance of TDS. Objective: The objective of this study was to develop and validate an efficient GC-Headspace method to determine the residual solvents (n-heptane, o-xylene, and ethyl acetate) in transdermal patches. The analytical method was applied to monitor residual solvents in TDS and evaluate the potential effect of the residual solvent levels on the TDS adhesion properties. Methods: An Agilent GC 7890A was integrated with an Agilent headspace analyzer 7697A system and was used for method development, analytical method validation, and the testing phases of the study. For the analysis of residual solvents in TDS, 2cm x 3cm, a TDS sample was placed in a 20 mL Headspace vial containing 2 mL of a DMSO/water (1:1, v/v) solvent mixture, and an external standard (cyclohexane) was extracted by the headspace analyzer. The system suitability test was conducted according to USP <621>, and analytical method validation was conducted according to USP <1225> over 3 days for validation and was also performed during in-study sample analysis. Results: The resolution between the solvents was acceptable (2.5, %RSD = 8.0). Intra- and inter-day accuracy and precision of all quality control standards as well as the spiked standards in the transdermal patches were found to be acceptable with RSD% ≤ 10% and accuracy ≥ 85%, respectively. Linearity was > 0.99 for all analytes. Conclusion: The validated GC-Headspace method was successfully applied to a pilot study for in-house manufactured TDS patches to study the impact of residual solvent concentration on adhesion performance.

2020 ◽  
Vol 588 ◽  
pp. 119713
Author(s):  
Sonal Mazumder ◽  
Diaa Shakleya ◽  
Sara Mattson ◽  
Muhammad Ashraf ◽  
Patrick Faustino ◽  
...  

2020 ◽  
Vol 19 (5) ◽  
pp. 360-373 ◽  
Author(s):  
Panoraia I. Siafaka ◽  
Ece Ö. Bülbül ◽  
Gökce Mutlu ◽  
Mehmet E. Okur ◽  
Ioannis D. Karantas ◽  
...  

Alzheimer's disease is a neuropathological disease with symptoms such as language problems, confusion as to place or time, loss of interest in activities, which were previously enjoyed, behavioral changes, and memory loss. Alzheimer's disease and other types of dementia affect almost 46.8 million people globally and are estimated to strike about 131.5 million people in 2050. It has been reported that Alzheimer's is the sixth main cause of mortality. The most used drugs, which are currently approved by the Food, and Drug Administration for Alzheimer’s disease are donepezil, rivastigmine, galantamine, memantine, and the combination of donepezil and memantine. However, most of the drugs present various adverse effects. Recently, the transdermal drug delivery route has gained increasing attention as an emerging tool for Alzheimer's disease management. Besides, transdermal drug delivery systems seem to provide hope for the management of various diseases, due to the advantages that they offer in comparison with oral dosage forms. Herein, the current advancements in transdermal studies with potent features to achieve better Alzheimer's disease management are presented. Many researchers have shown that the transdermal systems provide higher efficiency since the first-pass hepatic metabolism effect can be avoided and a prolonged drug release rate can be achieved. In summary, the transdermal administration of Alzheimer's drugs is an interesting and promising topic, which should be further elaborated and studied.


Author(s):  
Delly Ramadon ◽  
Maeliosa T. C. McCrudden ◽  
Aaron J. Courtenay ◽  
Ryan F. Donnelly

AbstractTransdermal drug delivery systems have become an intriguing research topic in pharmaceutical technology area and one of the most frequently developed pharmaceutical products in global market. The use of these systems can overcome associated drawbacks of other delivery routes, such as oral and parenteral. The authors will review current trends, and future applications of transdermal technologies, with specific focus on providing a comprehensive understanding of transdermal drug delivery systems and enhancement strategies. This article will initially discuss each transdermal enhancement method used in the development of first-generation transdermal products. These methods include drug/vehicle interactions, vesicles and particles, stratum corneum modification, energy-driven methods and stratum corneum bypassing techniques. Through suitable design and implementation of active stratum corneum bypassing methods, notably microneedle technology, transdermal delivery systems have been shown to deliver both low and high molecular weight drugs. Microneedle technology platforms have proven themselves to be more versatile than other transdermal systems with opportunities for intradermal delivery of drugs/biotherapeutics and therapeutic drug monitoring. These have shown that microneedles have been a prospective strategy for improving transdermal delivery systems. Graphical abstract


2018 ◽  
Vol 90 ◽  
pp. 356-364 ◽  
Author(s):  
Maira Gaspar Tosato ◽  
Julie V. Maya Girón ◽  
Airton A. Martin ◽  
Vamshi Krishna Tippavajhala ◽  
Mónica Fernández Lorenzo de Mele ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document