COL1A1 is a potential prognostic marker and therapeutic target in non-small cell lung cancer.

2022 ◽  
Vol 17 ◽  
Boyu Pan ◽  
Chen Huang ◽  
Yafei Xia ◽  
Cuicui Zhang ◽  
Bole Li ◽  

Background: Nowadays, non-small cell lung cancer (NSCLC) is a common and highly fatal malignancy in worldwide. Therefore, to identify the potential prognostic markers and therapeutic targets is urgent for patients. Objective: This study aims to find hub targets associated with NSCLC using multiple databases. Methods: Differentially expressed genes (DEGs) from Genome Expression Omnibus (GEO) cohorts were employed for the enrichment analyses of Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genome (KEGG) pathways. Candidate key genes, filtered from the topological parameter 'Degree' and validated using the The Cancer Genome Atlas (TCGA) cohort, were analyzed for their association with clinicopathological features and prognosis of NSCLC. Meanwhile, immunohistochemical cohort analyses and biological verification were further evaluated. Results: A total of 146 DEGs were identified following data preprocessing, and a protein-protein interaction (PPI) systematic network was constructed based on them. The top ten candidate core genes were further extracted from the above PPI network by using 'Degree' value, among which COL1A1 was shown to associate with overall survival (OS) of NSCLC as determined by using the Kaplan-Meier analysis (p=0.028), and could serve as an independent prognostic factor for OS in NSCLC patients (HR, 0.814; 95% CI, 0.665-0.996; p=0.046). We then analyzed the clinical stages, PPI, mutations, potential biological functions and immune regulations of COL1A1 in NSCLC patients using multiple bioinformatics tools, including GEPIA, GeneMANIA, cBioPortal, GESA and TISIDB. Finally, we further experimentally validated the overexpression of COL1A1 in NSCLC samples, and found that inhibition of COL1A1 expression moderately sensitized NSCLC cells to cisplatin. Conclusion: Thus, our results show that COL1A1 may serve as a potential prognostic marker and therapeutic target in NSCLC.

2018 ◽  
Vol 233 (12) ◽  
pp. 9548-9562 ◽  
May Chammaa ◽  
Agnes Malysa ◽  
Carlos Redondo ◽  
Hyejeong Jang ◽  
Wei Chen ◽  

2008 ◽  
Vol 26 (15_suppl) ◽  
pp. 11029-11029
E. Gallardo ◽  
A. Navarro ◽  
E. Carcereny ◽  
S. Jansa ◽  
N. Viñolas ◽  

Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3828
Anello Marcello Poma ◽  
Rossella Bruno ◽  
Iacopo Pietrini ◽  
Greta Alì ◽  
Giulia Pasquini ◽  

Pembrolizumab has been approved as first-line treatment for advanced Non-small cell lung cancer (NSCLC) patients with tumors expressing PD-L1 and in the absence of other targetable alterations. However, not all patients that meet these criteria have a durable benefit. In this monocentric study, we aimed at refining the selection of patients based on the expression of immune genes. Forty-six consecutive advanced NSCLC patients treated with pembrolizumab in first-line setting were enrolled. The expression levels of 770 genes involved in the regulation of the immune system was analysed by the nanoString system. PD-L1 expression was evaluated by immunohistochemistry. Patients with durable clinical benefit had a greater infiltration of cytotoxic cells, exhausted CD8, B-cells, CD45, T-cells, CD8 T-cells and NK cells. Immune cell scores such as CD8 T-cell and NK cell were good predictors of durable response with an AUC of 0.82. Among the immune cell markers, XCL1/2 showed the better performance in predicting durable benefit to pembrolizumab, with an AUC of 0.85. Additionally, CD8A, CD8B and EOMES showed a high specificity (>0.86) in identifying patients with a good response to treatment. In the same series, PD-L1 expression levels had an AUC of 0.61. The characterization of tumor microenvironment, even with the use of single markers, can improve patients’ selection for pembrolizumab treatment.

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1794
Alice Indini ◽  
Erika Rijavec ◽  
Francesco Grossi

Immune checkpoint inhibitors (ICIs) targeting the programmed cell death (PD)-1 protein and its ligand, PD-L1, and cytotoxic T-lymphocyte-associated antigen (CTLA)-4, have revolutionized the management of patients with advanced non-small cell lung cancer (NSCLC). Unfortunately, only a small portion of NSCLC patients respond to these agents. Furthermore, although immunotherapy is usually well tolerated, some patients experience severe immune-related adverse events (irAEs). Liquid biopsy is a non-invasive diagnostic procedure involving the isolation of circulating biomarkers, such as circulating tumor cells (CTC), cell-free DNA (cfDNA), and microRNAs (miRNAs). Thanks to recent advances in technologies, such as next-generation sequencing (NGS) and digital polymerase chain reaction (dPCR), liquid biopsy has become a useful tool to provide baseline information on the tumor, and to monitor response to treatments. This review highlights the potential role of liquid biomarkers in the selection of NSCLC patients who could respond to immunotherapy, and in the identification of patients who are most likely to experience irAEs, in order to guide improvements in care.

Sign in / Sign up

Export Citation Format

Share Document