Bilirubin and Epigenetic Modifications in Metabolic and Immunometabolic Disorders

Author(s):  
Mostafa Moradi Sarabi ◽  
Esmaeel Babaeenezhad ◽  
Maral Amini ◽  
Mozhgan Kaviani ◽  
Fakhraddin Naghibalhossaini

: Bilirubin is the main waste product of heme catabolism. At high concentrations, bilirubin may cause toxicity, especially in the brain, kidney, and erythrocytes. Membrane and mitochondrial dysfunction, oxidative stress, apoptosis, necrosis, endoplasmic reticulum stress, excitotoxicity, inflammation, and epigenetic modifications are the main mechanisms of toxicity triggered by bilirubin in susceptible organs. Many studies have shown that there is an interaction between bilirubin and epigenetic modifications in metabolic and immune diseases. In this review, we first outline the toxicity mediated by bilirubin and then summarize the current knowledge linking bilirubin and epigenetic modifications in metabolic and immunometabolic disorders.

2021 ◽  
Vol 13 ◽  
Author(s):  
Li Lei ◽  
Shuaifeng Yang ◽  
Xiaoyang Lu ◽  
Yongfa Zhang ◽  
Tao Li

Mitochondrial autophagy is an early defense and protection process that selectively clears dysfunctional or excessive mitochondria through a distinctive mechanism to maintain intracellular homeostasis. Mitochondrial dysfunction during cerebral stroke involves metabolic disbalance, oxidative stress, apoptosis, endoplasmic reticulum stress, and abnormal mitochondrial autophagy. This article reviews the research progress on the mechanism of mitochondrial autophagy in ischemic stroke to provide a theoretical basis for further research on mitochondrial autophagy and the treatment of ischemic stroke.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245797
Author(s):  
Gabriela M. Sanda ◽  
Camelia S. Stancu ◽  
Mariana Deleanu ◽  
Laura Toma ◽  
Loredan S. Niculescu ◽  
...  

Uptake of modified lipoproteins by macrophages turns them into foam cells, the hallmark of the atherosclerotic plaque. The initiation and progression of atherosclerosis have been associated with mitochondrial dysfunction. It is known that aggregated low-density lipoproteins (agLDL) induce massive cholesterol accumulation in macrophages in contrast with native LDL (nLDL) and oxidized LDL (oxLDL). In the present study we aimed to assess the effect of agLDL on the mitochondria and ER function in macrophage-derived foam cells, in an attempt to estimate the potential of these cells, known constituents of early fatty streaks, to generate atheroma in the absence of oxidative stress. Results show that agLDL induce excessive accumulation of free (FC) and esterified cholesterol in THP-1 macrophages and determine mitochondrial dysfunction expressed as decreased mitochondrial membrane potential and diminished intracellular ATP levels, without generating mitochondrial reactive oxygen species (ROS) production. AgLDL did not stimulate intracellular ROS (superoxide anion or hydrogen peroxide) production, and did not trigger endoplasmic reticulum stress (ERS) or apoptosis. In contrast to agLDL, oxLDL did not modify FC levels, but stimulated the accumulation of 7-ketocholesterol in the cells, generating oxidative stress which is associated with an increased mitochondrial dysfunction, ERS and apoptosis. Taken together, our results reveal that agLDL induce foam cells formation and mild mitochondrial dysfunction in human macrophages without triggering oxidative or ERS. These data could partially explain the early formation of fatty streaks in the intima of human arteries by interaction of monocyte-derived macrophages with non-oxidatively aggregated LDL generating foam cells, which cannot evolve into atherosclerotic plaques in the absence of the oxidative stress.


2014 ◽  
Vol 66 (1) ◽  
pp. 245-252 ◽  
Author(s):  
Zorica Jovanovic

Aging is an extremely complex, multifactorial process that is characterized by a gradual and continuous loss of physiological functions and responses, particularly marked in the brain. A common hallmark in aging and age-related diseases is an increase in oxidative stress and the failure of antioxidant defense systems. Current knowledge indicates that the level of glutathione progressively declines during aging. Because nerve cells are the longest-living cells that exhibit a high consumption rate of oxygen throughout an individual?s lifetime, the brain may be especially vulnerable to oxidative damage and this vulnerability increases during aging. In addition, the brain contains high concentrations of polyunsaturated fatty acids and transition metals and low antioxidative defense mechanisms. Although aging is an inevitable event, a growing volume of data confirms that antioxidant supplementation in combination with symptomatic drug treatments reduces oxidative stress and improves cognitive function in aging and age-related diseases. The present review discusses the neuroprotective effects of antioxidants in the aging brain.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yuqing Liu ◽  
Yundan Wang ◽  
Wei Ding ◽  
Yingdeng Wang

Background. Renal fibrosis is a common pathological symptom of chronic kidney disease (CKD). Many studies support that mitochondrial dysfunction and endoplasmic reticulum (ER) stress are implicated in the pathogenesis of CKD. In our study, we investigated the benefits and underlying mechanisms of Mito-TEMPO on renal fibrosis in 5/6 nephrectomy mice. Methods. Mice were randomly divided into five groups as follows: control group, CKD group, CKD + Mito-TEMPO (1 mg·kg−1·day−1) group, CKD + Mito-TEMPO (3 mg·kg−1·day−1) group, and Mito-TEMPO group (3 mg·kg−1·day−1). Renal fibrosis was evaluated by PAS, Masson staining, immunohistochemistry, and real-time PCR. Oxidative stress markers such as SOD2 activity and MDA level in serum and isolated mitochondria from renal tissue were measured by assay kits. Mitochondrial superoxide production was evaluated by MitoSOX staining and Western blot. Mitochondrial dysfunction was assessed by electron microscopy and real-time PCR. ER stress-associated protein was measured by Western blot. Results. Impaired renal function and renal fibrosis were significantly improved by Mito-TEMPO treatment. Furthermore, inflammation cytokines, profibrotic factors, oxidative stress markers, mitochondrial dysfunction, and ER stress were all increased in the CKD group. However, these effects were significantly ameliorated in the Mito-TEMPO treatment group. Conclusions. Mito-TEMPO ameliorates renal fibrosis by alleviating mitochondrial dysfunction and endoplasmic reticulum stress possibly through the Sirt3-SOD2 pathway, which sheds new light on prevention of renal fibrosis in chronic kidney disease.


2012 ◽  
Vol 265 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Mohammad K. Mohammad ◽  
Diana Avila ◽  
Jingwen Zhang ◽  
Shirish Barve ◽  
Gavin Arteel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document