scholarly journals Photoacoustic Imaging of Enucleated Eyes from Patients with Uveal Melanoma can Reveal Extrascleral Growth

2021 ◽  
Vol 15 (1) ◽  
pp. 270-276
Author(s):  
Ulf Dahlstrand ◽  
Aboma Merdasa ◽  
Jenny Hult ◽  
John Albinsson ◽  
Magnus Cinthio ◽  
...  

Background: Uveal melanoma is treated by either enucleation (removal of the eye) or local eye-sparing therapies, depending on tumor size and whether there are signs of extrascleral growth. Photoacoustic (PA) imaging is a novel imaging modality that provides high-resolution images of the molecular composition of tissues. Objective: In this study, the feasibility of PA imaging for uveal melanomas and detection of extrascleral growth was explored. Methods: Seven enucleated human eyes with uveal melanomas were examined using PA imaging. The spectral signatures of the melanomas and the layers of the normal eyewall were characterized using 59 excitation wavelengths from 680 to 970 nm. Results: Significant differences were seen between the spectra obtained from melanoma and the healthy eyewall. Using spectral unmixing, melanin, hemoglobin and collagen could be mapped out, showing the architecture of the tumor in relation to the eyewall. This allowed visualization of regions where the tumor extended into the extrascleral space. Conclusion: PA imaging appears to have the potential to aid in assessing uveal melanomas and as a diagnostic tool for the detection of extrascleral growth.

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3235
Author(s):  
Valeria Grasso ◽  
Joost Holthof ◽  
Jithin Jose

Multispectral photoacoustic imaging has been widely explored as an emerging tool to visualize and quantify tissue chromophores noninvasively. This modality can capture the spectral absorption signature of prominent tissue chromophores, such as oxygenated, deoxygenated hemoglobin, and other biomarkers in the tissue by using spectral unmixing methods. Currently, most of the reported image processing algorithms use standard unmixing procedures, which include user interaction in the form of providing the expected spectral signatures. For translational research with patients, these types of supervised spectral unmixing can be challenging, as the spectral signature of the tissues can differ with respect to the disease condition. Imaging exogenous contrast agents and accessing their biodistribution can also be problematic, as some of the contrast agents are susceptible to change in spectral properties after the tissue interaction. In this work, we investigated the feasibility of an unsupervised spectral unmixing algorithm to detect and extract the tissue chromophores without any a-priori knowledge and user interaction. The algorithm has been optimized for multispectral photoacoustic imaging in the spectral range of 680–900 nm. The performance of the algorithm has been tested on simulated data, tissue-mimicking phantom, and also on the detection of exogenous contrast agents after the intravenous injection in mice. Our finding shows that the proposed automatic, unsupervised spectral unmixing method has great potential to extract and quantify the tissue chromophores, and this can be used in any wavelength range of the multispectral photoacoustic images.


2021 ◽  
Author(s):  
Paolo Tasseron ◽  
Tim van Emmerik ◽  
Joseph Peller ◽  
Louise Schreyers ◽  
Lauren Biermann

<p><span>Airborne and spaceborne remote sensing (RS) collecting hyperspectral imagery provides a promising way forward for detection and monitoring of riverine and marine plastic pollution. However, a major challenge in the application of RS techniques is the lack of fundamental understanding of spectral signatures of floating plastic debris at multiple scales. Recent work emphasised the case for open-access hyperspectral reflectance reference libraries of commonly used polymer items. In this paper, we present a high-resolution hyperspectral image database of a unique mix of (i) 40 virgin macroplastic items, (ii) organic material of plant leaves, tree leaves and riparian vegetation, and (iii) 50 items of riverbank-harvested macrolitter including plastics and other anthropogenic debris. We used a double camera setup that covered the VIS-SWIR range from 400-1700 nm in a dark room experiment with controlled illumination. The cameras scanned the samples floating in water and captured high-resolution images in 336 spectral bands. From these images we identified diagnostic absorption features for different materials, item categories, and plastic polymers. The identification was done by applying a linear discriminant analysis to the spectra, allowing the creation of combined band indices distinguishing between the different item types and polymer categories. We present reflectance spectra of all items in our image dataset, complemented by easy-to-interpret visual representations of derived indices. We demonstrate the importance of high-resolution reference reflectance libraries, to (i) further optimise existing remote sensing monitoring techniques, and (ii) contribute towards the development of future plastic monitoring and classification missions.</span></p>


2020 ◽  
Vol 12 (23) ◽  
pp. 3985
Author(s):  
Guichen Zhang ◽  
Daniele Cerra ◽  
Rupert Müller

Shadows are frequently observable in high-resolution images, raising challenges in image interpretation, such as classification and object detection. In this paper, we propose a novel framework for shadow detection and restoration of atmospherically corrected hyperspectral images based on nonlinear spectral unmixing. The mixture model is applied pixel-wise as a nonlinear combination of endmembers related to both pure sunlit and shadowed spectra, where the former are manually selected from scenes and the latter are derived from sunlit spectra following physical assumptions. Shadowed pixels are restored by simulating their exposure to sunlight through a combination of sunlit endmembers spectra, weighted by abundance values. The proposed framework is demonstrated on real airborne hyperspectral images. A comprehensive assessment of the restored images is carried out both visually and quantitatively. With respect to binary shadow masks, our framework can produce soft shadow detection results, keeping the natural transition of illumination conditions on shadow boundaries. Our results show that the framework can effectively detect shadows and restore information in shadowed regions.


Author(s):  
Yushi Suzuki ◽  
Hiroki Kajita ◽  
Shiho Watanabe ◽  
Keisuke Okabe ◽  
Hisashi Sakuma ◽  
...  

Abstract Background Lymphatic vessels are difficult to identify using existing modalities as because of their small diameter and the transparency of the lymph fluid flowing through them. Methods Here, we introduce photoacoustic lymphangiography (PAL), a new modality widely used for lymphedema treatment, to observe limb lymphatic vessels. The photoacoustic imaging system used in this study can simultaneously visualize lymphatic vessels and veins with a high resolution (0.2 mm) and can also observe their three-dimensional relationship with each other. Results High-resolution images of the lymphatic vessels, detailed structure of the dermal back flow, and the three-dimensional positional relationship between the lymphatic vessels and veins were observed by PAL. Conclusion The clear image provided by PAL could have a major application in pre- and postoperative use during lymphaticovenular anastomosis for lymphedema treatment.


1994 ◽  
Vol 144 ◽  
pp. 541-547
Author(s):  
J. Sýkora ◽  
J. Rybák ◽  
P. Ambrož

AbstractHigh resolution images, obtained during July 11, 1991 total solar eclipse, allowed us to estimate the degree of solar corona polarization in the light of FeXIV 530.3 nm emission line and in the white light, as well. Very preliminary analysis reveals remarkable differences in the degree of polarization for both sets of data, particularly as for level of polarization and its distribution around the Sun’s limb.


Author(s):  
Etienne de Harven

Biological ultrastructures have been extensively studied with the scanning electron microscope (SEM) for the past 12 years mainly because this instrument offers accurate and reproducible high resolution images of cell shapes, provided the cells are dried in ways which will spare them the damage which would be caused by air drying. This can be achieved by several techniques among which the critical point drying technique of T. Anderson has been, by far, the most reproducibly successful. Many biologists, however, have been interpreting SEM micrographs in terms of an exclusive secondary electron imaging (SEI) process in which the resolution is primarily limited by the spot size of the primary incident beam. in fact, this is not the case since it appears that high resolution, even on uncoated samples, is probably compromised by the emission of secondary electrons of much more complex origin.When an incident primary electron beam interacts with the surface of most biological samples, a large percentage of the electrons penetrate below the surface of the exposed cells.


Author(s):  
S. Saito ◽  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

Field emission scanning electron microscope (FESEM) features extremely high resolution images, and offers many valuable information. But, for a specimen which gives low contrast images, lateral stripes appear in images. These stripes are resulted from signal fluctuations caused by probe current noises. In order to obtain good images without stripes, the fluctuations should be less than 1%, especially for low contrast images. For this purpose, the authors realized a noise compensator, and applied this to the FESEM.Fig. 1 shows an outline of FESEM equipped with a noise compensator. Two apertures are provided gust under the field emission gun.


Author(s):  
David C. Joy ◽  
Dennis M. Maher

High-resolution images of the surface topography of solid specimens can be obtained using the low-loss technique of Wells. If the specimen is placed inside a lens of the condenser/objective type, then it has been shown that the lens itself can be used to collect and filter the low-loss electrons. Since the probeforming lenses in TEM instruments fitted with scanning attachments are of this type, low-loss imaging should be possible.High-resolution, low-loss images have been obtained in a JEOL JEM 100B fitted with a scanning attachment and a thermal, fieldemission gun. No modifications were made to the instrument, but a wedge-shaped, specimen holder was made to fit the side-entry, goniometer stage. Thus the specimen is oriented initially at a glancing angle of about 30° to the beam direction. The instrument is set up in the conventional manner for STEM operation with all the lenses, including the projector, excited.


Author(s):  
M. Kelly ◽  
D.M. Bird

It is well known that strain fields can have a strong influence on the details of HREM images. This, for example, can cause problems in the analysis of edge-on interfaces between lattice mismatched materials. An interesting alternative to conventional HREM imaging has recently been advanced by Pennycook and co-workers where the intensity variation in the annular dark field (ADF) detector is monitored as a STEM probe is scanned across the specimen. It is believed that the observed atomic-resolution contrast is correlated with the intensity of the STEM probe at the atomic sites and the way in which this varies as the probe moves from cell to cell. As well as providing a directly interpretable high-resolution image, there are reasons for believing that ADF-STEM images may be less suseptible to strain than conventional HREM. This is because HREM images arise from the interference of several diffracted beams, each of which is governed by all the excited Bloch waves in the crystal.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Sign in / Sign up

Export Citation Format

Share Document