scholarly journals Trade-offs between Manure Management with and without Biogas Production

2018 ◽  
Vol 11 (1) ◽  
pp. 1-11
Author(s):  
Norbert Grösch ◽  
Mitra K. Delivand ◽  
Mirko Barz ◽  
Petra Bittrich

Introduction: In rural developing countries with a traditional manure management, animal manure is a value-added agricultural commodity being utilized as a source of fuel and plant nutrients. The sustainable environmental management of this resource has to consider the whole upstream and downstream activities of current management systems. Methods & Materials: In line with this requirement, this study has integrated the Intergovernmental Panel on Climate Change (IPCC) method on manure managements into the life-cycle assessment of two different manure management systems: the traditional system without biogas production and the alternative system with biogas production. Special attention is given to compare the GHG emissions as well as Nitrogen (N), Phosphorous (P), and Potassium (K) Fertilizing Nutrients (NPK) from the two systems. Results: The great advantage of manure conversion to biogas is mainly due to the avoided wood (18 kg/animal.yr), crop-residues (12 kg/ animal.yr) and dung (8 kg/ animal.yr) used as cooking fuels in the region. If methane leakage is over 38% then this will offset the GHG emission reduction of manure-to-biogas system.

2018 ◽  
Vol 34 (6) ◽  
pp. 973-1000 ◽  
Author(s):  
Jason P Oliver ◽  
Jenna E Schueler ◽  
Curt A Gooch ◽  
Stephanie Lansing ◽  
Diana S Aga

Abstract. The performance of manure management systems, on a component-by-component basis, at 11 Northeastern U.S. dairy farm concentrated animal feeding operations (CAFO) was quantified by semi-continuous monitoring for 15 months. Each collaborating farm (CF) had one or more of the following: solid-liquid separation (SLS), separated solids(SS) treatment by lime, rotary drum processing and windrow composting, anaerobic treatment by anaerobic digestion (AD), lagoons, and long-term storage(s). Operational and performance metrics included: temperature, pH, total solids (TS), volatile solids (VS), loading rates, and biogas production. Generally, most CFs had functional and well-operating systems based on expected and optimal operating conditions and sample constituent changes, although, sampling and monitoring limitations restricted complete performance assessments. Despite the limitations, differences in treatment effectiveness were noted, which were often related to influent conditions. Higher SLS solids capture efficiencies (typ. > 40%), and biogas production rates (= 3.8 m3 d-1 lactating cow equivalents (LCE)-1), were associated with more concentrated manure slurry influents [TS > 0.050 g g-1 wet basis (w.b.)]. Anaerobic digester configuration and the use of co-substrates also influenced anaerobic treatments. Generally, intensively managed ADs outperformed passively managed lagoons, and co-digestion enhanced biogas production (= 4.3 m3 d-1 LCE-1) and VS reductions (up to 48% w.b.), though co-digestion sometimes hampered process stability. The effectiveness of SS processing was also treatment dependent, with well-managed windrows yielding the greatest increases in TS concentrations (up to 0.600 g g-1 w.b.). Long-term storage of manure slurry had modest, non-significant, impacts on TS and VS concentrations, and pH. This work illustrated a range of manure management systems used on NE dairy farm CAFOs, parameterized their treatment of manure slurries and SS, and established a baseline for additional studies aimed at the capacity of these systems to mitigate emerging contaminant like antibiotic residues. Keywords: Anaerobic digestion, Antimicrobial resistance, Biogas, Compost, Lime treatment, Long-term storage, Solid-liquid separation.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 845
Author(s):  
Seunggun Won ◽  
Youngbin Yoon ◽  
Muhammad Mahboob Ali Hamid ◽  
Arif Reza ◽  
Soomin Shim ◽  
...  

The agricultural sector is considered one of the major sources of greenhouse gas (GHG) emissions globally. The livestock industry as a significant contributor, is accounting for about 18% of GHG emissions measured in carbon dioxide (CO2) equivalent from agricultural practices. Depending on farming practices and climatic conditions, GHGs such as methane (CH4) and nitrous oxide (N2O) emissions from livestock agriculture can vary significantly. Country-specific emission factors are, therefore, needed for a precise estimation of GHG emissions and to avoid uncertainties. This study was aimed at estimating the CH4 and N2O emission fluxes from Hanwoo (the most famous and popular Korean native cattle) manure management systems. CH4 and N2O emission fluxes from litter in the Hanwoo cattle barn and composting lot were monitored and calculated for 52 weeks using the dynamic chamber method. The calculated monthly average fluxes of CH4 and N2O from litter in the cattle barn ranged from 0.0 to 30.0 ± 13.7 and 0.896 ± 0.557 to 2.925 ± 2.853 μg/m2 s, respectively during the whole measurement period. While during the composting period, the monthly average of CH4 and N2O emission fluxes were varied from 1.449 ± 0.783 to 86.930 ± 19.092 and 0.511 ± 0.410 to 2.629 ± 1.105 μg/m2 s, respectively. The calculated emission fluxes of CH4 and N2O from manure management systems in this study were almost 5.4 and 2.1 times, respectively higher than the values reported for the Asian, South and North American countries in the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Overall, this study initiates the process along with signifies the importance of developing country-specific GHG inventories for the effective reduction of GHG emissions from the livestock sector in Korea.


Author(s):  
Jenn A. Bentley ◽  
Leo L. Timms ◽  
Larry F. Tranel ◽  
Ron A. Lenth

Author(s):  
Svitlana Ishchuk ◽  
Lyubomyr Sozanskyy

The scale and deep heterogeneity of the national economy of Ukraine in the regional context make the relevance of scientific research in this thematic area. The purpose of the article is to determine the economic specialization of the regions of Ukraine by key economic activities contributing to the formation of gross value added, as well as outlining the potential risks to the national economy, taking into account the situation on world commodity markets. The results of the research showed that one of the consequences of the unstable dynamics of industrial production in Ukraine under the influence of geopolitical and macroeconomic factors is the reduction of industrial specialization of the economy of a number of Ukrainian regions. Thus, in 2017 the manufacturing was the leading economic activity (with the highest share in the gross value added created) in 11 regions, compared to 15 in 2012. So Poltava, Donetsk, Dnipropetrovsk and Zaporizhzhya regions are considered to be “highly industrial”. At the same time, the agrarian specialization of the economy of Ukraine and its regions deepened – in 2017 agriculture became the leading type of economic activity in 11 regions (compared to 7 in 2012). The most “agrarian” in Ukraine (with a share of agriculture in gross value added over 30%) in 2017 became the Kherson, Kirovohrad and Khmelnytsky regions. Increasing the level of “agrarianization” of the national economy in the context of volatility of agricultural commodity prices on the world markets poses significant risks for the socio-economic development of Ukraine and its regions. These risks are exacerbated by the high amplitude of fluctuations in the volume and structure of domestic agricultural products and the low degree of processing of raw materials. To improve the structure of domestic commodity exports (in the direction of increasing its share of products with a higher degree of processing) and to deepen its diversification, a number of measures should be carried out aimed at stimulating export activity of enterprises (industrial and agro-industrial), carrying out technical and technological re-equipment of industrial and export production bases, creation of new high-tech industries on the basis of the implementation of powerful innovation and investment projects.


2017 ◽  
Vol 47 (2) ◽  
pp. 250-264 ◽  
Author(s):  
Chulatep Senivongse ◽  
Alex Bennet ◽  
Stefania Mariano

Purpose The purpose of this paper is to demonstrate the value of using a systematic literature review to develop an integrated framework for information and knowledge management systems. Design/methodology/approach First, the systematic literature review method is introduced, differentiating it from traditional literature reviews in terms of value-added and limitations. Second, this methodology is used in a research application focused on absorptive capacity internal capabilities with regard to the processes of acquisition, assimilation, transformation and exploitation. Third, an integrated framework for information and knowledge management systems is developed from this application. Findings The systematic literature review approach provides a rigor that can assist in reducing researcher bias while simultaneously enabling the definition of a precise scope of review, with a clear explanation of selection criteria with the objective to find and review all the studies that are relevant to the search definitions. As a research method, it effectively supports a qualitative, quantitative or mixed methodology. Research limitations/implications This methodology was applied to one specific area of research. Specific limitations include the availability of articles in subscribed databases and the analytical capabilities of the tools used for text mining and analytics. Originality/value This paper demonstrates the usefulness of the systematic literature review methodology in developing an integrated framework for analysis.


2019 ◽  
Vol 11 (16) ◽  
pp. 4261 ◽  
Author(s):  
Xuerong Li ◽  
Faliang Gui ◽  
Qingpeng Li

The development of clean energy is of great importance in alleviating both the energy crisis and environmental pollution resulting from rapid global economic growth. Hydroelectric generation is considered climate benign, as it neither requires fossil carbon to produce energy nor emits large amounts of greenhouse gases (GHG), unlike conventional energy generation techniques such as coal and oil power plants. However, dams and their associated reservoirs are not entirely GHG-neutral and their classification as a clean source of energy requires further investigation. This study evaluated the environmental impact of the Xiajiang hydropower station based on life cycle assessment (LCA) according to the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines, focusing specifically on GHG emissions after the submersion of the reservoir. Results reveal that although hydropower is not as clean as we thought, it is still an absolute “low emissions” power type in China. The amount of GHG emissions produced by this station is 3.72 million tons with an emissions coefficient of 32.63 g CO2eq/kWh. This figure is lower than that of thermal power, thus implying that hydropower is still a clean energy resource in China. Our recommendations to further minimize the environmental impacts of this station are the optimization of relevant structural designs, the utilization of new and improved construction materials, and the extension of farmland lifting technology.


Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 201 ◽  
Author(s):  
A. R. Melland ◽  
D. L. Antille ◽  
Y. P. Dang

Occasional strategic tillage (ST) of long-term no-tillage (NT) soil to help control weeds may increase the risk of water, erosion and nutrient losses in runoff and of greenhouse gas (GHG) emissions compared with NT soil. The present study examined the short-term effect of ST on runoff and GHG emissions in NT soils under controlled-traffic farming regimes. A rainfall simulator was used to generate runoff from heavy rainfall (70mmh–1) on small plots of NT and ST on a Vertosol, Dermosol and Sodosol. Nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes from the Vertosol and Sodosol were measured before and after the rain using passive chambers. On the Sodosol and Dermosol there was 30% and 70% more runoff, respectively, from ST plots than from NT plots, however, volumes were similar between tillage treatments on the Vertosol. Erosion was highest after ST on the Sodosol (8.3tha–1 suspended sediment) and there were no treatment differences on the other soils. Total nitrogen (N) loads in runoff followed a similar pattern, with 10.2kgha–1 in runoff from the ST treatment on the Sodosol. Total phosphorus loads were higher after ST than NT on both the Sodosol (3.1 and 0.9kgha–1, respectively) and the Dermosol (1.0 and 0.3kgha–1, respectively). Dissolved nutrient forms comprised less than 13% of total losses. Nitrous oxide emissions were low from both NT and ST in these low-input systems. However, ST decreased CH4 absorption from both soils and almost doubled CO2 emissions from the Sodosol. Strategic tillage may increase the susceptibility of Sodosols and Dermosols to water, sediment and nutrient losses in runoff after heavy rainfall. The trade-offs between weed control, erosion and GHG emissions should be considered as part of any tillage strategy.


2018 ◽  
Vol 61 (3) ◽  
pp. 1121-1131 ◽  
Author(s):  
Yuanqing Zhou ◽  
Hongmin Dong ◽  
Hongwei Xin ◽  
Zhiping Zhu ◽  
Wenqiang Huang ◽  
...  

Abstract. China raises 50% of global live pigs. However, few studies on the carbon footprint (CF) of large-scale pig production based on China’s actual production conditions have been carried out. In this study, life cycle assessment (LCA) and actual production data of a typical large-scale pig farm in northern China were used to assess the greenhouse gas (GHG) emissions or CF associated with the whole process of pig production, including feed production (crop planting, feed processing, and transportation), enteric fermentation, manure management, and energy consumption. The results showed a CF of 3.39 kg CO2-eq per kg of live market pig and relative contributions of 55%, 28%, 13%, and 4% to the total CF by feed production, manure management, farm energy consumption, and enteric fermentation, respectively. Crop planting accounted for 66% of the feed production CF, while feed processing and transportation accounted for the remaining 34%. Long-distance transport of semi-raw feed materials caused by planting-feeding separation and over-fertilization in feed crop planting were two main reasons for the largest contribution of GHG emissions from feed production to the total CF. The CF from nitrogen fertilizer application accounted for 33% to 44% of crop planting and contributed to 16% of the total CF. The CF from the transport of feed ingredients accounted for 17% of the total CF. If the amount of nitrogen fertilizer used for producing the main feed ingredients is reduced from 209 kg hm-2 (for corn) and 216 kg hm-2 (for wheat) to 140 kg hm-2 (corn) and 180 kg hm-2 (wheat), the total CF would be reduced by 7%. If the transport distance for feed materials decreased from 325 to 493 km to 30 km, along with reducing the number of empty vehicles for transport, the total CF would be reduced by 18%. The combined CF mitigation potential for over-fertilization and transport distance is 26%. In addition, the use of pit storage, anaerobic digestion, and lagoon for manure management can reduce GHG emissions from manure management by 76% as compared to the traditional practice of pit storage and lagoon. This case study reveals the impact of planting-feeding separation and over-fertilization on the CF of the pig supply chain in China. The manure management practice of pit storage, anaerobic digestion, and lagoon is much more conductive to reducing the CF as compared to the traditional practice of pit storage and lagoon. Keywords: Greenhouse gas, Life cycle assessment, Mitigation, Pig.


2016 ◽  
Vol 13 (14) ◽  
pp. 4253-4269 ◽  
Author(s):  
Rosa Maria Roman-Cuesta ◽  
Mariana C. Rufino ◽  
Martin Herold ◽  
Klaus Butterbach-Bahl ◽  
Todd S. Rosenstock ◽  
...  

Abstract. According to the latest report of the Intergovernmental Panel on Climate Change (IPCC), emissions must be cut by 41–72 % below 2010 levels by 2050 for a likely chance of containing the global mean temperature increase to 2 °C. The AFOLU sector (Agriculture, Forestry and Other Land Use) contributes roughly a quarter ( ∼  10–12 Pg CO2e yr−1) of the net anthropogenic GHG emissions mainly from deforestation, fire, wood harvesting, and agricultural emissions including croplands, paddy rice, and livestock. In spite of the importance of this sector, it is unclear where the regions with hotspots of AFOLU emissions are and how uncertain these emissions are. Here we present a novel, spatially comparable dataset containing annual mean estimates of gross AFOLU emissions (CO2, CH4, N2O), associated uncertainties, and leading emission sources, in a spatially disaggregated manner (0.5°) for the tropics for the period 2000–2005. Our data highlight the following: (i) the existence of AFOLU emissions hotspots on all continents, with particular importance of evergreen rainforest deforestation in Central and South America, fire in dry forests in Africa, and both peatland emissions and agriculture in Asia; (ii) a predominant contribution of forests and CO2 to the total AFOLU emissions (69 %) and to their uncertainties (98 %); (iii) higher gross fluxes from forests, which coincide with higher uncertainties, making agricultural hotspots appealing for effective mitigation action; and (iv) a lower contribution of non-CO2 agricultural emissions to the total gross emissions (ca. 25 %), with livestock (15.5 %) and rice (7 %) leading the emissions. Gross AFOLU tropical emissions of 8.0 (5.5–12.2) were in the range of other databases (8.4 and 8.0 Pg CO2e yr−1 in FAOSTAT and the Emissions Database for Global Atmospheric Research (EDGAR) respectively), but we offer a spatially detailed benchmark for monitoring progress in reducing emissions from the land sector in the tropics. The location of the AFOLU hotspots of emissions and data on their associated uncertainties will assist national policy makers, investors, and other decision-makers who seek to understand the mitigation potential of the AFOLU sector.


Sign in / Sign up

Export Citation Format

Share Document