Role of Green Silver Nanoparticles in the Inhibition of Listeria monocytogenes and Escherichia coli

2020 ◽  
Vol 10 (1) ◽  
pp. 39-50
Author(s):  
Anvesha Sinha ◽  
Jayanand Manjhi

Background: The quandary of antimicrobial resistance is rapidly becoming a cause for global concern. Meanwhile, green biological synthesis of silver nanoparticles is being extensively studied for their antibacterial properties. However, in the dearth of appropriate and substantial evidence, the development of Green Silver Nanoparticles (GSNPs) as the antibacterial drug is impeded. Objective: The present study aims at surfacing the mechanism behind the inhibitory actions of GSNPs against both gram-positive and gram-negative bacteria. Methods: Silver nanoparticles were fabricated using the peels of Citrus Sinensis and Punica granatum and characterized using UV-Vis Spectrophotometer, XRD, FTIR, SEM and TEM. The GSNPs were further scrutinized for their antibacterial properties against Gran negative Escherichia coli and grampositive Listeria monocytogenes and confirmed using FC analysis. Further multiple parameters were investigated for deciphering the mechanism of antibacterial action. Results: The results reveal the fabrication of 14-60 nm polydispersed GSNPs having 96% inhibition potential against both the test bacteria. Deposition of GSNPs on the bacterial surface resulting in pit formation in the bacterial cell wall and membrane causing leaking of cellular components and deactivation of bacterial enzymes were observed in the present study. Conclusion: The study proves that contrary to earlier investigations, GSNPs prepared using orange and pomegranate peels are effective against both gram positive and gram negative bacteria and may thus be used for the development of antibacterial therapies, subjected to further investigation.

Author(s):  
Liliya BAZYLYAK ◽  
◽  
Andriy KYTSYA ◽  
Ilona KARPENKO ◽  
Olena KARPENKO ◽  
...  

Widespread use of synthetic antimicrobial drugs leads to the development of antibiotic resistance of pathogenic strains of microorganisms. Therefore, today researchers are very interested in drugs based on nanoparticles of metals, in particular silver and copper, which have antibacterial, antifungal and antiviral activity. One of the reasons for the high interest of researchers in AgNPs as an antimicrobial agent is the significantly lower toxicity of AgNPs compared to Ag+ ions. High antibacterial efficiency of silver nano¬particles is achieved due to their developed surface, which provides maximum contact with the environment. In addition, such nanoparticles are quite small and are able to penetrate cell membranes, to affect intracellular processes from within. Therefore, the aim of this work was to obtain concentrated colloidal silver solutions stabilized by citrate anions, which simultaneously provide satisfactory stabilization of colloidal silver solutions and are non-toxic, as well as to investigate the antimicrobial action of synthesized AgNPs. The solution of citrate stabilized silver nanoparticles (AgNPs) have been obtained via the reaction of reduction of silver nitrate by hydrazine in alkaline medium in the presence of sodium citrate. AgNPs were investigated using transmission electron microscopy (TEM) and UV-vis spectroscopy and the particles size and particles size distribution (PSD) were determined. It was observed that obtained AgNPs are mainly spherical shape. It was found that the mean diameter and PSD of AgNPs determined using TEM and UV-vis spectroscopy are close and equal to 14 and 5 nm and 15 and 4 nm respectively. Obtained solution was concentrated by evaporation at 70 C under reduced pressure up to achievement of AgNPs concentration equal to 200 mg/L. On the base of comparison of optical properties of initial silver sol and concentrated solution the minority of agglomeration of AgNPs was statement. At the same time AgNO3 test showed no change of UV-vis spectrum of concentrate that points on the absence of reducing agent in the solution; this fact indicate that hydrazine was eliminated from during the evaporation of initial AgNPs solution and obtained concentrate did not consist the toxic impurities. Antimicrobial activity of obtained citrate stabilised AgNPs against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacterium was tested using disk diffusion method. It was found that AgNPs shown significant bactericidal effect even at low (25 mg/L) concentration as well as some higher efficiency against Gram-negative bacterium. There was also a slightly higher antimicrobial activity of the drug against gram-negative bacteria Escherichia coli compared with gram-positive bacteria Bacillus subtilis, due to the different structure of cell walls. In particular, the walls of gram-positive bacteria consist mainly of peptidoglycan (murein), and gram-negative bacteria have cell walls with a layer of peptidoglycan and an outer membrane with a lipopolysaccharide component, which is not present in gram-positive bacteria. Based on the studies, it can be concluded that the proposed method of synthesis of AgNPs is suitable for obtaining highly concentrated silver sols. This method of synthesis is simple in hardware design, scalable, and the resulting colloidal solutions are stable and do not contain harmful impurities. Therefore, due to the high antibacterial activity of citrate-anion-stabilized AgNPs against certain types of gram-positive and gram-negative bacteria, it can be recommended for the manufacture of bactericidal drugs for biomedical purposes.


10.5219/1413 ◽  
2020 ◽  
Vol 14 ◽  
pp. 641-646
Author(s):  
Miroslava Kačániová ◽  
Petra Borotová ◽  
Margarita Terenjeva ◽  
Simona Kunová ◽  
Soňa Felsöciová ◽  
...  

Bryndza cheese includes several predominant lactic acid bacteria. The aim of our study was the antagonistic effect of lactic acid bacteria supernatant isolated from ewes´ cheese bryndza against ten Gram-positive and Gram-negative bacteria. Isolated strains of bacteria were obtained from bryndza which were produced in five different regions of Slovakia. Isolated strains of lactic acid bacteria were identified with mass spectrometry MALDI-TOF MS Biotyper. A total of one hundred and thirty lactic bacteria include Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, Lactobacillus brevis, Lactobacillus harbinensis, Lactobacillus johnsonii, Lactobacillus plantarum, Lactobacillus paracasei ssp. paracasei, Lactobacillus paraplantarum, Lactobacillus suebicus, Lactococcus lactis ssp. lactis, Lactococcus lactis, and Pediococcus acidilactici were tested in this study against Gram-negative bacteria: Escherichia coli CCM 3988, Klebsiella pneumoniae CCM 2318, Salmonella enterica subsp. enterica CCM 3807, Shigella sonnei CCM 1373, Yersinia enterocolitica CCM 5671 and Gram-positive bacteria: Bacillus thuringiensis CCM 19, Enterococcus faecalis CCM 4224, Listeria monocytogenes CCM 4699, Staphylococcus aureus subsp. aureus CCM 2461, Streptococcus pneumonia CCM 4501 with agar diffusion method. Lactic acid bacteria showed activity 92% against Yersinia enterocolitica, 91% against Klebsiella pneumoniae, 88% against Escherichia coli, 84% against Listeria monocytogenes. The most effective bacteria against Gram-positive and Gram-negative bacteria tested was Lactobacillus paracasei ssp. paracasei.


2021 ◽  
Vol 36 (2) ◽  
pp. 93-110
Author(s):  
Princy Philip ◽  
Tomlal Jose ◽  
Sarath KS ◽  
Sunny Kuriakose

Silver nanoparticles with 5–10 nm diameters are synthesised using Couroupita guianensis flower extract. The synthesised silver nanoparticles found to show good antimicrobial activity against gram negative and gram positive bacteria. Poly(methyl methacrylate) nanofibers with pristine, surface roughened and coaxial hollow forms are prepared by electrospinning. The structural and morphological properties of these pure and structurally modified poly(methyl methacrylate) nanofibers are evidenced by various analytical techniques. The antimicrobial studies of poly(methyl methacrylate) nanofibers having different architectures incorporated with silver nanoparticles are carried out. It is found that, all the three forms of poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show antibacterial properties against both gram positive and gram negative bacteria. Among these, surface roughened poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show highest antibacterial activity than the other two structural forms. The present study offers an alternative to the existing optical lenses. People especially those who suffer from eye problems can protect their eyes in a better way from infectious agents by wearing optical lens made from C. guianensis stabilised silver nanoparticles incorporated poly(methyl methacrylate) nanofibers than that made from pure poly(methyl methacrylate) nanofibers or films.


Children ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 436
Author(s):  
Giovanni Parente ◽  
Tommaso Gargano ◽  
Stefania Pavia ◽  
Chiara Cordola ◽  
Marzia Vastano ◽  
...  

Pyelonephritis (PN) represents an important cause of morbidity in the pediatric population, especially in uropathic patients. The aim of the study is to demonstrate differences between PNs of uropathic patients and PNs acquired in community in terms of uropathogens involved and antibiotic sensitivity; moreover, to identify a proper empiric therapeutic strategy. A retrospective study was conducted on antibiograms on urine cultures from PNs in vesicoureteral reflux (VUR) patients admitted to pediatric surgery department and from PNs in not VUR patients admitted to Pediatric Emergency Unit between 2010 and 2020. We recorded 58 PNs in 33 patients affected by VUR and 112 PNs in the not VUR group. The mean age of not VUR patients at the PN episode was 1.3 ± 2.6 years (range: 20 days of life–3 years), and almost all the urine cultures, 111 (99.1%), isolated Gram-negative bacteria and rarely, 1 (0.9%), Gram-positive bacteria. The Gram-negative uropathogens isolated were Escherichia coli (97%), Proteus mirabilis (2%), and Klebsiella spp. (1%). The only Gram-positive bacteria isolated was an Enterococcus faecalis. As regards the antibiograms, 96% of not VUR PNs responded to beta-lactams, 99% to aminoglycosides, and 80% to sulfonamides. For the VUR group, mean age was 3.0 years ± 3.0 years (range: 9 days of life–11 years) and mean number of episodes per patient was 2.0 ± 1.0 (range: 1–5); 83% of PNs were by Gram-negatives bacteria vs. 17% by Gram-positive: the most important Gram-negative bacteria were Pseudomonas aeruginosa (44%), Escherichia coli (27%), and Klebsiella spp. (12%), while Enterococcus spp. determined 90% of Gram-positive UTIs. Regimen ampicillin/ceftazidime (success rate: 72.0%) was compared to ampicillin/amikacin (success rate of 83.0%): no statistically significant difference was found (p = 0.09). The pathogens of PNs in uropathic patients are different from those of community-acquired PNs, and clinicians should be aware of their peculiar antibiotic susceptibility. An empiric therapy based on the association ampicillin + ceftazidime is therefore suggested.


2021 ◽  
Vol 19 (9) ◽  
pp. 38-45
Author(s):  
Hussein H. Al-Turnachy ◽  
Fadhilk. alibraheemi ◽  
Ahmed Abd Alreda Madhloom ◽  
Zahraa Yosif Motaweq ◽  
Nibras Yahya Abdulla

The present study was included the assessment of the antimicrobial activity of AgNPs synthesized by Punica granatum peel extract against pathogenic bacteria by testing warm aqueous P. granatum peel extract and silver nanoparticles. Punica granatum indicated potency for AgNP extracellular nanobiosynthesis after addition of silver nitrate (AgNO3) 4mM to the extract supernatant, in both concentrations (100mg and 50mg). The biogenic AgNPs showed potency to inhibit both gram-negative and gram-positive bacterial growth. Zons of inhibition in (mm) was lesser in gram-positive than gram-negative bacteria. The resulted phytogenic AgNPs gave higher biological activity than warm aqueous Punica granatum peel extract. The inhibition zone of the phytogenic AgNPs on E. coli reached 17.53, 22.35, and 26.06 mm at (0.1, 0.5, and 1) mg/ml respectively. While inhibition zones of Punica warm aqueous extract reached 5.33, 10.63, and 16.08 mm at the same concentrations. phytogenic AgNPs gave smaller inhibition zones in gram-positive than gram- negative. Cytotoxic activity of the phytogenic AgNPs was assayed in vitro agaist human blood erythrocytes (RBCs), spectroscopic results showed absorbance at 540 nm hemolysis was observed. In general, AgNPs showed least RBCs hemolysis percentage, at 1 mg/ml concentration, hemolysis percentage was (4.50%). This study, concluded that the Punica granatum peel extract has the power of synthses of AgNPs characterized by broad spectrum antimicrobial activity with cyto-toxicity proportional to AgNPs concentration.


Chemistry ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1271-1285
Author(s):  
Patricia Zimet ◽  
Ruby Valadez ◽  
Sofía Raffaelli ◽  
María Belén Estevez ◽  
Helena Pardo ◽  
...  

Microbial technology offers a green alternative for the synthesis of value-added nanomaterials. In particular, fungal compounds can improve silver nanoparticle production, stabilizing colloidal nanoparticles. Based on a previous study by our group, silver nanoparticles obtained using the extracellular cell-free extracts of Phanerochaete chrysosporium (PchNPs) have shown antimicrobial and antibiofilm activity against Gram-negative bacteria. Moreover, nisin—a bacteriocin widely used as a natural food preservative—has recently gained much attention due its antimicrobial action against Gram-positive bacteria in biomedical applications. Therefore, the aim of this work was to conjugate biogenic silver nanoparticles (PchNPs) with nisin to obtain nanoconjugates (PchNPs@nis) with enhanced antimicrobial properties. Characterization assays were conducted to determine physicochemical properties of PchNPs@nis, and also their antibacterial and antibiofilm activities were studied. The formation of PchNPs@nis was confirmed by UV-Vis, TEM, and Raman spectroscopy analysis. Different PchNPs@nis nanobioconjugates showed diameter values in the range of 60–130 nm by DLS and surface charge values between −20 and −13 mV. Nisin showed an excellent affinity to PchNPs, with binding efficiencies higher than 75%. Stable synthesized PchNPs@nis nanobioconjugates were not only able to inhibit biofilm formation by S. aureus, but also showed inhibition of the planktonic cell growth of Staphyloccocus aureus and Escherichia coli, broadening the spectrum of action of the unconjugated antimicrobials against Gram-positive and Gram-negative bacteria. In conclusion, these results show the promising application of PchNPs@nis, prepared via green technology, as potential antimicrobial nanomaterials.


2016 ◽  
Vol 34 (2) ◽  
pp. 35
Author(s):  
Prayna P. P. Maharaj ◽  
Riteshma Devi ◽  
Surendra Prasad

Fiji is highly populated with plants containing essential oils (EO). The essential oils extracted from the leaves of the selected Fijian leafy plants were screened against two Gram-negative bacteria (Salmonella typhimurium, Pseudomonas aeruginosa) and three Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis). The agar diffusion method was used to examine the antimicrobial activities of the extracted EO. All the EO tested showed antibacterial properties against one or more strains while none of the EO was active against Pseudomonas aeruginosa. Viburnum lantana (Wayfaring tree), Annona muricata (Soursop), Coleus amboinicus (Spanish thyme) and Cinnamomum zeylancium (Cinnamon) showed good inhibition against both Gram-positive and Gram-negative bacteria and proved as worthy source of antimicrobial agent. These findings will help the Pacific population to use the studied plants leaves as antimicrobial agent.


Sign in / Sign up

Export Citation Format

Share Document