Simulation and Performance Analysis of Tilted Time Window and Support Vector Machine Based Learning Object Ranking Method

Author(s):  
Narina Thakur ◽  
Deepti Mehrotra ◽  
Abhay Bansal ◽  
Manju Bala

Objective: Since the adequacy of Learning Objects (LO) is a dynamic concept and changes in its use, needs and evolution, it is important to consider the importance of LO in terms of time to assess its relevance as the main objective of the proposed research. Another goal is to increase the classification accuracy and precision. Methods: With existing IR and ranking algorithms, MAP optimization either does not lead to a comprehensively optimal solution or is expensive and time - consuming. Nevertheless, Support Vector Machine learning competently leads to a globally optimal solution. SVM is a powerful classifier method with its high classification accuracy and the Tilted time window based model is computationally efficient. Results: This paper proposes and implements the LO ranking and retrieval algorithm based on the Tilted Time window and the Support Vector Machine, which uses the merit of both methods. The proposed model is implemented for the NCBI dataset and MAT Lab. Conclusion: The experiments have been carried out on the NCBI dataset, and LO weights are assigned to be relevant and non - relevant for a given user query according to the Tilted Time series and the Cosine similarity score. Results showed that the model proposed has much better accuracy.

Author(s):  
Wanli Wang ◽  
Botao Zhang ◽  
Kaiqi Wu ◽  
Sergey A Chepinskiy ◽  
Anton A Zhilenkov ◽  
...  

In this paper, a hybrid method based on deep learning is proposed to visually classify terrains encountered by mobile robots. Considering the limited computing resource on mobile robots and the requirement for high classification accuracy, the proposed hybrid method combines a convolutional neural network with a support vector machine to keep a high classification accuracy while improve work efficiency. The key idea is that the convolutional neural network is used to finish a multi-class classification and simultaneously the support vector machine is used to make a two-class classification. The two-class classification performed by the support vector machine is aimed at one kind of terrain that users are mostly concerned with. Results of the two classifications will be consolidated to get the final classification result. The convolutional neural network used in this method is modified for the on-board usage of mobile robots. In order to enhance efficiency, the convolutional neural network has a simple architecture. The convolutional neural network and the support vector machine are trained and tested by using RGB images of six kinds of common terrains. Experimental results demonstrate that this method can help robots classify terrains accurately and efficiently. Therefore, the proposed method has a significant potential for being applied to the on-board usage of mobile robots.


2016 ◽  
Vol 25 (3) ◽  
pp. 417-429
Author(s):  
Chong Wu ◽  
Lu Wang ◽  
Zhe Shi

AbstractFor the financial distress prediction model based on support vector machine, there are no theories concerning how to choose a proper kernel function in a data-dependent way. This paper proposes a method of modified kernel function that can availably enhance classification accuracy. We apply an information-geometric method to modifying a kernel that is based on the structure of the Riemannian geometry induced in the input space by the kernel. A conformal transformation of a kernel from input space to higher-dimensional feature space enlarges volume elements locally near support vectors that are situated around the classification boundary and reduce the number of support vectors. This paper takes the Gaussian radial basis function as the internal kernel. Additionally, this paper combines the above method with the theories of standard regularization and non-dimensionalization to construct the new model. In the empirical analysis section, the paper adopts the financial data of Chinese listed companies. It uses five groups of experiments with different parameters to compare the classification accuracy. We can make the conclusion that the model of modified kernel function can effectively reduce the number of support vectors, and improve the classification accuracy.


Author(s):  
Gang Liu ◽  
Chunlei Yang ◽  
Sen Liu ◽  
Chunbao Xiao ◽  
Bin Song

A feature selection method based on mutual information and support vector machine (SVM) is proposed in order to eliminate redundant feature and improve classification accuracy. First, local correlation between features and overall correlation is calculated by mutual information. The correlation reflects the information inclusion relationship between features, so the features are evaluated and redundant features are eliminated with analyzing the correlation. Subsequently, the concept of mean impact value (MIV) is defined and the influence degree of input variables on output variables for SVM network based on MIV is calculated. The importance weights of the features described with MIV are sorted by descending order. Finally, the SVM classifier is used to implement feature selection according to the classification accuracy of feature combination which takes MIV order of feature as a reference. The simulation experiments are carried out with three standard data sets of UCI, and the results show that this method can not only effectively reduce the feature dimension and high classification accuracy, but also ensure good robustness.


2011 ◽  
Vol 80-81 ◽  
pp. 490-494 ◽  
Author(s):  
Han Bing Liu ◽  
Yu Bo Jiao ◽  
Ya Feng Gong ◽  
Hai Peng Bi ◽  
Yan Yi Sun

A support vector machine (SVM) optimized by particle swarm optimization (PSO)-based damage identification method is proposed in this paper. The classification accuracy of the damage localization and the detection accuracy of severity are used as the fitness function, respectively. The best and can be obtained through velocity and position updating of PSO. A simply supported beam bridge with five girders is provided as numerical example, damage cases with single and multiple suspicious damage elements are established to verify the feasibility of the proposed method. Numerical results indicate that the SVM optimized by PSO method can effectively identify the damage locations and severity.


2013 ◽  
Vol 295-298 ◽  
pp. 644-647 ◽  
Author(s):  
Yu Kai Yao ◽  
Hong Mei Cui ◽  
Ming Wei Len ◽  
Xiao Yun Chen

SVM (Support Vector Machine) is a powerful data mining algorithm, and is mainly used to finish classification or regression tasks. In this literature, SVM is used to conduct disease prediction. We focus on integrating with stratified sample and grid search technology to improve the classification accuracy of SVM, thus, we propose an improved algorithm named SGSVM: Stratified sample and Grid search based SVM. To testify the performance of SGSVM, heart-disease data from UCI are used in our experiment, and the results show SGSVM has obvious improvement in classification accuracy, and this is very valuable especially in disease prediction.


Author(s):  
Wei-Yen Hsu

In this chapter, a practical artifact removal Brain-Computer Interface (BCI) system for single-trial Electroencephalogram (EEG) data is proposed for applications in neuroprosthetics. Independent Component Analysis (ICA) combined with the use of a correlation coefficient is proposed to remove the EOG artifacts automatically, which can further improve classification accuracy. The features are then extracted from wavelet transform data by means of the proposed modified fractal dimension. Finally, Support Vector Machine (SVM) is used for the classification. When compared with the results obtained without using the EOG signal elimination, the proposed BCI system achieves promising results that will be effectively applied in neuroprosthetics.


2020 ◽  
Vol 9 (4) ◽  
pp. 1-17
Author(s):  
Mridu Sahu ◽  
Tushar Jani ◽  
Maski Saijahnavi ◽  
Amrit Kumar ◽  
Upendra Chaurasiya ◽  
...  

Rust detection is necessary for proper working and maintenance of machines for security purposes. Images are one of the suggested platforms for rust detection in which rust can be detected even though the human can't reach to the area. However, there are a lack of online databases available that can provide a sizable dataset to identify the most suitable model that can be used further. This paper provides a data augmentation technique by using Perlin noise, and further, the generated images are tested on standard features (i.e., statistical values, entropy, along with SIFT and SURF methods). The two most generalized classifiers, naïve Bayes and support vector machine, are identified and tested to obtain the performance of classification of rusty and non-rusty images. The support vector machine provides better classification accuracy, which also suggests that that the combined features of statistics, SIFT, and SURF are able to differentiate the images. Hence, it can be further used to detect the rust in different parts of machines.


2015 ◽  
Vol 77 (18) ◽  
Author(s):  
Mohd. Khanapi Abd. Ghani ◽  
Daniel Hartono Sutanto

Over recent years, Non-communicable Disease (NCDs) is the high mortality rate in worldwide likely diabetes mellitus, cardiovascular diseases, liver and cancers. NCDs prediction model have problems such as redundant data, missing data, imbalance dataset and irrelevant attribute. This paper proposes a novel NCDs prediction model to improve accuracy. Our model comprisesk-means as clustering technique, Weight by SVM as feature selection technique and Support Vector Machine as classifier technique. The result shows that k-means + weight SVM + SVM improved the classification accuracy on most of all NCDs dataset (accuracy; AUC), likely Pima Indian Dataset (99.52; 0.999), Breast Cancer Diagnosis Dataset (98.85; 1.000), Breast Cancer Biopsy Dataset (97.71; 0.998), Colon Cancer (99.41; 1.000), ECG (98.33; 1.000), Liver Disorder (99.13; 0.998).The significant different performed by k-means + weight by SVM + SVM. In the time to come, we are expecting to better accuracy rate with another classifier such as Neural Network.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Paweł Tarnowski ◽  
Marcin Kołodziej ◽  
Andrzej Majkowski ◽  
Remigiusz Jan Rak

This article reports the results of the study related to emotion recognition by using eye-tracking. Emotions were evoked by presenting a dynamic movie material in the form of 21 video fragments. Eye-tracking signals recorded from 30 participants were used to calculate 18 features associated with eye movements (fixations and saccades) and pupil diameter. To ensure that the features were related to emotions, we investigated the influence of luminance and the dynamics of the presented movies. Three classes of emotions were considered: high arousal and low valence, low arousal and moderate valence, and high arousal and high valence. A maximum of 80% classification accuracy was obtained using the support vector machine (SVM) classifier and leave-one-subject-out validation method.


Sign in / Sign up

Export Citation Format

Share Document