Detection of Enterotoxin Genes in Bacillus species Isolated from Cassava Processing Environment in Nigeria.

2022 ◽  
Vol 02 ◽  
Author(s):  
Nkem Torimiro ◽  
Oluwafemi B. Daramola ◽  
Richard K. Omole ◽  
Ifeyimika Z. Adesina

Introduction: The health challenges associated with cassava products as a common staple food for approximately 70% of Africans and part of Asia pose a looming danger due to Bacillus enterotoxins’ presence in the processing environment. Objective: This study investigated the presence of enterotoxigenic genes namely, Bacillus cereus enterotoxin T (bceT), hemolysin bl (hblC, hblD) and non-haemolytic enterotoxin (nheA, nheB and nheC) from Bacillus species isolated from soil of cassava processing environment. Methods: Soil samples from 20 cassava processing sites in Ile-Ife and Modakeke, Nigeria were collected and cultured on Nutrient agar at 37 ºC for 24 hours. Colonies phenotypically identified as Bacillus were identified using Bacillus-specific 16S rRNA-targeted PCR technique. Screened Bacillus spp were assessed for the presence of enterotoxigenic genes using PCR with previously reported primers. Results: A total of 100 Bacillus isolates were selected from this study with Bacillus macerans (33 %) showing the highest frequency of occurrence among the identified species, however, 74 isolates were molecularly confirmed as Bacillus. Amongst the 74 molecularly confirmed Bacillus isolates, 28 (37.84%), 35 (47.30 %) and 37 (50 %) has nhe, hbl and bceT genes respectively. Investigation showed that 42 (56.76 %) of the Bacillus species encoded at least one of the screened enterotoxin genes. Conclusion: The presence of these 3 sets of enterotoxin genes in Bacillus isolated from cassava processing sites calls for immediate attention as they could be pivotal in the release of toxins in cassava products, cause lethal effects via consumption. This study demonstrates the possibility of foodborne disease outbreaks in Bacillus toxin-laden cassava products processed under unhygienic conditions.

2010 ◽  
Vol 73 (5) ◽  
pp. 870-878 ◽  
Author(s):  
FOLARIN A. OGUNTOYINBO ◽  
MELANIE HUCH ◽  
GYU-SUNG CHO ◽  
ULRICH SCHILLINGER ◽  
WILHELM H. HOLZAPFEL ◽  
...  

The diversity of Bacillus species isolated from the fermented soup condiment okpehe in Nigeria was studied using a combination of phenotypic and genotypic methods. Fifty strains presumptively characterized as Bacillus spp. using the API 50 CHB test were further identified by PCR of randomly amplified polymorphic DNA (RAPD) and by amplified ribosomal DNA restriction analysis (ARDRA) genotyping methods. ARDRA fingerprinting with HhaI, HinfI, and Sau3AI restriction enzymes did not allow successful differentiation between the Bacillus species, except for distinguishing B. cereus from other Bacillus species. This problem was overcome with the combination of RAPD PCR and ARDRA genotypic fingerprinting techniques. Sequencing of 16S rRNA genes of selected strains representative of the major clusters revealed that the Bacillus strains associated with this fermentation were B. subtilis, B. amyloliquefaciens, B. cereus, and B. licheniformis (in decreasing order of incidence). The presence of enterotoxin genes in all B. cereus strains was demonstrated by multiplex PCR. The high incidence of detection (20%) of possibly pathogenic B. cereus strains that contained enterotoxin genes indicated that these fermented foods may constitute a potential health risk.


2021 ◽  
pp. 1-24
Author(s):  
Qihua Qiu ◽  
Daniel Dewey-Mattia ◽  
Sanjana Subramhanya ◽  
Zhaohui Cui ◽  
Patricia M. Griffin ◽  
...  

2021 ◽  
Vol 9 (8) ◽  
pp. 1615
Author(s):  
Alfonso Torres-Sánchez ◽  
Jesús Pardo-Cacho ◽  
Ana López-Moreno ◽  
Ángel Ruiz-Moreno ◽  
Klara Cerk ◽  
...  

The variable taxa components of human gut microbiota seem to have an enormous biotechnological potential that is not yet well explored. To investigate the usefulness and applications of its biocompounds and/or bioactive substances would have a dual impact, allowing us to better understand the ecology of these microbiota consortia and to obtain resources for extended uses. Our research team has obtained a catalogue of isolated and typified strains from microbiota showing resistance to dietary contaminants and obesogens. Special attention was paid to cultivable Bacillus species as potential next-generation probiotics (NGP) together with their antimicrobial production and ecological impacts. The objective of the present work focused on bioinformatic genome data mining and phenotypic analyses for antimicrobial production. In silico methods were applied over the phylogenetically closest type strain genomes of the microbiota Bacillus spp. isolates and standardized antimicrobial production procedures were used. The main results showed partial and complete gene identification and presence of polyketide (PK) clusters on the whole genome sequences (WGS) analysed. Moreover, specific antimicrobial effects against B. cereus, B. circulans, Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Serratia marcescens, Klebsiella spp., Pseudomonas spp., and Salmonella spp. confirmed their capacity of antimicrobial production. In conclusion, Bacillus strains isolated from human gut microbiota and taxonomic group, resistant to Bisphenols as xenobiotics type endocrine disruptors, showed parallel PKS biosynthesis and a phenotypic antimicrobial effect. This could modulate the composition of human gut microbiota and therefore its functionalities, becoming a predominant group when high contaminant exposure conditions are present.


1984 ◽  
Vol 5 (2) ◽  
pp. 71-74 ◽  
Author(s):  
Inge Gurevich ◽  
Patricia Tafuro ◽  
Sharon P. Krystofiak ◽  
Robert D. Kalter ◽  
Burke A. Cunha

AbstractDuring a ten-month period from September 1981 to July 1982 three episodes of pseudobacteremia due to Bacillus species occurred at this 550-bed institution. The first involved eight isolates, the second 11, and the third seven isolates of the organism, all with the same antibiogram.The patients involved did not exhibit clinical signs of septicemia, and in only one case was more than one specimen per patient positive when multiple blood samples were obtained. Occasional blood cultures of Bacillus species identified in between clusters revealed a different antibiogram.Extensive epidemiologic investigation of patient locations, phlebotomists, and time of cultures yielded no common source. Components involved in the transport and processing of blood cultures, including the radiometric blood culture processor, were also sampled but without recovery of the organism. After the last episode, a layer of dust was noted inside the machine, and culture of this dust grew Bacillus spp. with the same antibiogram as those found in the blood cultures. The filter from an air conditioning unit in close proximity to the machine grew several species of Bacillus.It is presumed that Bacillus spores in the dust were introduced into the blood culture bottles following the heat sterilization of the gas sampling (inoculation/removal) needles.Modification of the cover of the machine was undertaken to prevent access of dust bearing microbes to the inside of the machine. In addition, maintenance now includes regular disinfection/cleaning of the “floor” of the machine, and more frequent changes of the air conditioner filter.


2011 ◽  
Vol 4 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Jeffrey Blazar ◽  
Marc Allard ◽  
E. Kurt Lienau

AbstractFood safety is an important consideration worldwide. To maintain and improve our current knowledge of foodborne disease outbreaks, we must understand some of the more imminent issues related to food safety. A variety of agents are responsible for transmitting the estimated 76 million cases of illnesses caused by foodborne pathogens every year. This review explores why insects pose a serious health concern, in terms of worldwide food safety initiatives, by looking at evidence in published <abs>Food safety is an important consideration worldwide. To maintain and improve our current knowledge of foodborne disease outbreaks, we must understand some of the more imminent issues related to food safety. A variety of agents are responsible for transmitting the estimated 76 million cases of illnesses caused by foodborne pathogens every year. This review explores why insects pose a serious health concern, in terms of worldwide food safety initiatives, by looking at evidence in published literature. We highlight at least eleven different species of insects, including the lesser mealworm, Alphitobius diaperinus (Panzer); secondary screwworm, Cochliomyia macellaria (Fabricius); synanthropic flies [flesh fly, Sarcophaga carnaria (L.); house fly, Musca domestica (L.); fruit fly, Drosophila melanogaster (Meigen); and stable fly, Stomoxys calcitrans (L.)], American cockroach, Periplaneta americana (L.); German cockroach, Blatella germanica (L.); Oriental cockroach, Blatta orientalis (L.); Pacific beetle cockroach, Diploptera punctata (Eschscholtz); and Speckled feeder cockroach, Nauphoeta cinerea (Olivier), which act as vectors for Salmonella spp. or Escherichia coli and illustrate how these insects are successful vectors of foodborne disease outbreaks. We propose that insects be considered as one of the latest issues in food safety initiatives. Not only are some insects extremely important contributors to diseases, but now we suggest that more research into insects as potential carriers of E. coli and Salmonella spp., and therefore as contributing to foodborne disease outbreaks, is granted.


2006 ◽  
Vol 69 (10) ◽  
pp. 2357-2363 ◽  
Author(s):  
MARÍA VICTORIA SELMA ◽  
DAVID BELTRÁN ◽  
ELISEO CHACÓN-VERA ◽  
MARÍA ISABEL GIL

Fresh vegetables contaminated with Yersinia enterocolitica have been implicated in foodborne disease outbreaks. Surfaces of vegetables can become contaminated with pathogenic microorganisms through contact with soil, irrigation water, fertilizers, equipment, humans, and animals. One approach to reduce this contamination is to treat fresh produce with sanitizers. In this study, the ability of ozone to inactivate Y. enterocolitica inoculated in water and on potato surfaces was evaluated. Furthermore, the efficacy of ozone in reducing natural flora on whole potato was determined. Total aerobic mesophilic and psychrotrophic bacteria, total coliforms, and Listeria monocytogenes were enumerated. Finally, several disinfection kinetic models were considered to predict Y. enterocolitica inactivation with ozone. Treatments with ozone (1.4 and 1.9 ppm) for 1 min decreased the Y. enterocolitica population in water by 4.6 and 6.2 log CFU ml−1, respectively. Furthermore, ozonated water (5 ppm) for 1 min decreased Y. enterocolitica and L. monocytogenes from potato surfaces by 1.6 and 0.8 log CFU g−1, respectively. Therefore, ozone can be an effective treatment for disinfection of wash water and for reduction of potato surface contamination.


2018 ◽  
Author(s):  
Ylberina Baliu ◽  
Bahtir Hyseni ◽  
Shkëlqim Hyseni ◽  
Aida Rushiti ◽  
Flora Ferati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document