AN EFFICIENT MACHINE LEARNING MODEL FOR PREDICTION OF ACUTE MYOCARDIAL INFARCTION

Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.

2021 ◽  
Author(s):  
Junjie Shi ◽  
Jiang Bian ◽  
Jakob Richter ◽  
Kuan-Hsun Chen ◽  
Jörg Rahnenführer ◽  
...  

AbstractThe predictive performance of a machine learning model highly depends on the corresponding hyper-parameter setting. Hence, hyper-parameter tuning is often indispensable. Normally such tuning requires the dedicated machine learning model to be trained and evaluated on centralized data to obtain a performance estimate. However, in a distributed machine learning scenario, it is not always possible to collect all the data from all nodes due to privacy concerns or storage limitations. Moreover, if data has to be transferred through low bandwidth connections it reduces the time available for tuning. Model-Based Optimization (MBO) is one state-of-the-art method for tuning hyper-parameters but the application on distributed machine learning models or federated learning lacks research. This work proposes a framework $$\textit{MODES}$$ MODES that allows to deploy MBO on resource-constrained distributed embedded systems. Each node trains an individual model based on its local data. The goal is to optimize the combined prediction accuracy. The presented framework offers two optimization modes: (1) $$\textit{MODES}$$ MODES -B considers the whole ensemble as a single black box and optimizes the hyper-parameters of each individual model jointly, and (2) $$\textit{MODES}$$ MODES -I considers all models as clones of the same black box which allows it to efficiently parallelize the optimization in a distributed setting. We evaluate $$\textit{MODES}$$ MODES by conducting experiments on the optimization for the hyper-parameters of a random forest and a multi-layer perceptron. The experimental results demonstrate that, with an improvement in terms of mean accuracy ($$\textit{MODES}$$ MODES -B), run-time efficiency ($$\textit{MODES}$$ MODES -I), and statistical stability for both modes, $$\textit{MODES}$$ MODES outperforms the baseline, i.e., carry out tuning with MBO on each node individually with its local sub-data set.


2020 ◽  
Vol 6 ◽  
Author(s):  
Jaime de Miguel Rodríguez ◽  
Maria Eugenia Villafañe ◽  
Luka Piškorec ◽  
Fernando Sancho Caparrini

Abstract This work presents a methodology for the generation of novel 3D objects resembling wireframes of building types. These result from the reconstruction of interpolated locations within the learnt distribution of variational autoencoders (VAEs), a deep generative machine learning model based on neural networks. The data set used features a scheme for geometry representation based on a ‘connectivity map’ that is especially suited to express the wireframe objects that compose it. Additionally, the input samples are generated through ‘parametric augmentation’, a strategy proposed in this study that creates coherent variations among data by enabling a set of parameters to alter representative features on a given building type. In the experiments that are described in this paper, more than 150 k input samples belonging to two building types have been processed during the training of a VAE model. The main contribution of this paper has been to explore parametric augmentation for the generation of large data sets of 3D geometries, showcasing its problems and limitations in the context of neural networks and VAEs. Results show that the generation of interpolated hybrid geometries is a challenging task. Despite the difficulty of the endeavour, promising advances are presented.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 607 ◽  
Author(s):  
Ihab Ahmed Najm ◽  
Alaa Khalaf Hamoud ◽  
Jaime Lloret ◽  
Ignacio Bosch

The 5G network is a next-generation wireless form of communication and the latest mobile technology. In practice, 5G utilizes the Internet of Things (IoT) to work in high-traffic networks with multiple nodes/sensors in an attempt to transmit their packets to a destination simultaneously, which is a characteristic of IoT applications. Due to this, 5G offers vast bandwidth, low delay, and extremely high data transfer speed. Thus, 5G presents opportunities and motivations for utilizing next-generation protocols, especially the stream control transmission protocol (SCTP). However, the congestion control mechanisms of the conventional SCTP negatively influence overall performance. Moreover, existing mechanisms contribute to reduce 5G and IoT performance. Thus, a new machine learning model based on a decision tree (DT) algorithm is proposed in this study to predict optimal enhancement of congestion control in the wireless sensors of 5G IoT networks. The model was implemented on a training dataset to determine the optimal parametric setting in a 5G environment. The dataset was used to train the machine learning model and enable the prediction of optimal alternatives that can enhance the performance of the congestion control approach. The DT approach can be used for other functions, especially prediction and classification. DT algorithms provide graphs that can be used by any user to understand the prediction approach. The DT C4.5 provided promising results, with more than 92% precision and recall.


2020 ◽  
Author(s):  
Jihane Elyahyioui ◽  
Valentijn Pauwels ◽  
Edoardo Daly ◽  
Francois Petitjean ◽  
Mahesh Prakash

<p>Flooding is one of the most common and costly natural hazards at global scale. Flood models are important in supporting flood management. This is a computationally expensive process, due to the high nonlinearity of the equations involved and the complexity of the surface topography. New modelling approaches based on deep learning algorithms have recently emerged for multiple applications.</p><p>This study aims to investigate the capacity of machine learning to achieve spatio-temporal flood modelling. The combination of spatial and temporal input data to obtain dynamic results of water levels and flows from a machine learning model on multiple domains for applications in flood risk assessments has not been achieved yet. Here, we develop increasingly complex architectures aimed at interpreting the raw input data of precipitation and terrain to generate essential spatio-temporal variables (water level and velocity fields) and derived products (flood maps) by training these based on hydrodynamic simulations.</p><p>An extensive training dataset is generated by solving the 2D shallow water equations on simplified topographies using Lisflood-FP.</p><p>As a first task, the machine learning model is trained to reproduce the maximum water depth, using as inputs the precipitation time series and the topographic grid. The models combine the spatial and temporal information through a combination of 1D and 2D convolutional layers, pooling, merging and upscaling. Multiple variations of this generic architecture are trained to determine the best one(s). Overall, the trained models return good results regarding performance indices (mean squared error, mean absolute error and classification accuracy) but fail at predicting the maximum water depths with sufficient precision for practical applications.</p><p>A major limitation of this approach is the availability of training examples. As a second task, models will be trained to bring the state of the system (spatially distributed water depth and velocity) from one time step to the next, based on the same inputs as previously, generating the full solution equivalent to that of a hydrodynamic solver. The training database becomes much larger as each pair of consecutive time steps constitutes one training example.</p><p>Assuming that a reliable model can be built and trained, such methodology could be applied to build models that are faster and less computationally demanding than hydrodynamic models. Indeed, in with the synthetic cases shown here, the simulation times of the machine learning models (< seconds) are far shorter than those of the hydrodynamic model (a few minutes at least). These data-driven models could be used for interpolation and forecasting. The potential for extrapolation beyond the range of training datasets will also be investigated (different topography and high intensity precipitation events). </p>


2019 ◽  
Author(s):  
Rohan Khera ◽  
Julian Haimovich ◽  
Nate Hurley ◽  
Robert McNamara ◽  
John A Spertus ◽  
...  

ABSTRACTIntroductionAccurate prediction of risk of death following acute myocardial infarction (AMI) can guide the triage of care services and shared decision-making. Contemporary machine-learning may improve risk-prediction by identifying complex relationships between predictors and outcomes.Methods and ResultsWe studied 993,905 patients in the American College of Cardiology Chest Pain-MI Registry hospitalized with AMI (mean age 64 ± 13 years, 34% women) between January 2011 and December 2016. We developed and validated three machine learning models to predict in-hospital mortality and compared the performance characteristics with a logistic regression model. In an independent validation cohort, we compared logistic regression with lasso regularization (c-statistic, 0.891 [95% CI, 0.890-0.892]), gradient descent boosting (c-statistic, 0.902 [0.901-0.903]), and meta-classification that combined gradient descent boosting with a neural network (c-statistic, 0.904 [0.903-0.905]) with traditional logistic regression (c-statistic, 0.882 [0.881-0.883]). There were improvements in classification of individuals across the spectrum of patient risk with each of the three methods; the meta-classifier model – our best performing model - reclassified 20.9% of individuals deemed high-risk for mortality in logistic regression appropriately as low-to-moderate risk, and 8.2% of deemed low-risk to moderate-to-high risk based consistent with the actual event rates.ConclusionsMachine-learning methods improved the prediction of in-hospital mortality for AMI compared with logistic regression. Machine learning methods enhance the utility of risk models developed using traditional statistical approaches through additional exploration of the relationship between variables and outcomes.


Author(s):  
Yuhong Huang ◽  
Wenben Chen ◽  
Xiaoling Zhang ◽  
Shaofu He ◽  
Nan Shao ◽  
...  

Aim: After neoadjuvant chemotherapy (NACT), tumor shrinkage pattern is a more reasonable outcome to decide a possible breast-conserving surgery (BCS) than pathological complete response (pCR). The aim of this article was to establish a machine learning model combining radiomics features from multiparametric MRI (mpMRI) and clinicopathologic characteristics, for early prediction of tumor shrinkage pattern prior to NACT in breast cancer.Materials and Methods: This study included 199 patients with breast cancer who successfully completed NACT and underwent following breast surgery. For each patient, 4,198 radiomics features were extracted from the segmented 3D regions of interest (ROI) in mpMRI sequences such as T1-weighted dynamic contrast-enhanced imaging (T1-DCE), fat-suppressed T2-weighted imaging (T2WI), and apparent diffusion coefficient (ADC) map. The feature selection and supervised machine learning algorithms were used to identify the predictors correlated with tumor shrinkage pattern as follows: (1) reducing the feature dimension by using ANOVA and the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation, (2) splitting the dataset into a training dataset and testing dataset, and constructing prediction models using 12 classification algorithms, and (3) assessing the model performance through an area under the curve (AUC), accuracy, sensitivity, and specificity. We also compared the most discriminative model in different molecular subtypes of breast cancer.Results: The Multilayer Perception (MLP) neural network achieved higher AUC and accuracy than other classifiers. The radiomics model achieved a mean AUC of 0.975 (accuracy = 0.912) on the training dataset and 0.900 (accuracy = 0.828) on the testing dataset with 30-round 6-fold cross-validation. When incorporating clinicopathologic characteristics, the mean AUC was 0.985 (accuracy = 0.930) on the training dataset and 0.939 (accuracy = 0.870) on the testing dataset. The model further achieved good AUC on the testing dataset with 30-round 5-fold cross-validation in three molecular subtypes of breast cancer as following: (1) HR+/HER2–: 0.901 (accuracy = 0.816), (2) HER2+: 0.940 (accuracy = 0.865), and (3) TN: 0.837 (accuracy = 0.811).Conclusions: It is feasible that our machine learning model combining radiomics features and clinical characteristics could provide a potential tool to predict tumor shrinkage patterns prior to NACT. Our prediction model will be valuable in guiding NACT and surgical treatment in breast cancer.


2019 ◽  
Vol 8 (3) ◽  
pp. 7809-7817

Creating a fast domain independent ontology through knowledge acquisition is a key problem to be addressed in the domain of knowledge engineering. Updating and validation is impossible without the intervention of domain experts, which is an expensive and tedious process. Thereby, an automatic system to model the ontology has become essential. This manuscript presents a machine learning model based on heterogeneous data from multiple domains including agriculture, health care, food and banking, etc. The proposed model creates a complete domain independent process that helps in populating the ontology automatically by extracting the text from multiple sources by applying natural language processing and various techniques of data extraction. The ontology instances are classified based on the domain. A Jaccord Relationship extraction process and the Neural Network Approval for Automated Theory is used for retrieval of data, automated indexing, mapping and knowledge discovery and rule generation. The results and solutions show the proposed model can automatically and efficiently construct automated Ontology


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yi Yin ◽  
Mingyue Xue ◽  
Lingen Shi ◽  
Tao Qiu ◽  
Derun Xia ◽  
...  

Objective. To establish a machine learning model for identifying patients coinfected with hepatitis B virus (HBV) and human immunodeficiency virus (HIV) through two sexual transmission routes in Jiangsu, China. Methods. A total of 14197 HIV cases transmitted by homosexual and heterosexual routes were recruited. After data processing, 12469 cases (HIV and HBV, 1033; HIV, 11436) were left for further analysis, including 7849 cases with homosexual transmission and 4620 cases with heterosexual transmission. Univariate logistic regression was used to select variables with significant P value and odds ratio for multivariable analysis. In homosexual transmission and heterosexual transmission groups, 10 and 6 variables were selected, respectively. For identifying HIV individuals coinfected with HBV, a machine learning model was constructed with four algorithms, including Decision Tree, Random Forest, AdaBoost with decision tree (AdaBoost), and extreme gradient boosting decision tree (XGBoost). The detective value of each variable was calculated using the optimal machine learning algorithm. Results. AdaBoost algorithm showed the highest efficiency in both transmission groups (homosexual transmission group: accuracy = 0.928 , precision = 0.915 , recall = 0.944 , F − 1 = 0.930 , and AUC = 0.96 ; heterosexual transmission group: accuracy = 0.892 , precision = 0.881 , recall = 0.905 , F − 1 = 0.893 , and AUC = 0.98 ). Calculated by AdaBoost algorithm, the detective value of PLA was the highest in homosexual transmission group, followed by CR, AST, HB, ALT, TBIL, leucocyte, age, marital status, and treatment condition; in the heterosexual transmission group, the detective value of PLA was the highest (consistent with the condition in the homosexual group), followed by ALT, AST, TBIL, leucocyte, and symptom severity. Conclusions. The univariate logistics regression combined with the AdaBoost algorithm could accurately screen the risk factors of HBV in HIV coinfection without invasive testing. Further studies are needed to evaluate the utility and feasibility of this model in various settings.


In this paper we propose a novel supervised machine learning model to predict the polarity of sentiments expressed in microblogs. The proposed model has a stacked neural network structure consisting of Long Short Term Memory (LSTM) and Convolutional Neural Network (CNN) layers. In order to capture the long-term dependencies of sentiments in the text ordering of a microblog, the proposed model employs an LSTM layer. The encodings produced by the LSTM layer are then fed to a CNN layer, which generates localized patterns of higher accuracy. These patterns are capable of capturing both local and global long-term dependences in the text of the microblogs. It was observed that the proposed model performs better and gives improved prediction accuracy when compared to semantic, machine learning and deep neural network approaches such as SVM, CNN, LSTM, CNN-LSTM, etc. This paper utilizes the benchmark Stanford Large Movie Review dataset to show the significance of the new approach. The prediction accuracy of the proposed approach is comparable to other state-of-art approaches.


Sign in / Sign up

Export Citation Format

Share Document