scholarly journals Why we Need a Heated Chamber for 3D Printing with ‘High Performance’ Polymers?

2022 ◽  
Author(s):  
E. Boytsov

Abstract. This paper is dedicated to the features of the processes of 3D printing of polymers with a high melting point such as PEEK, CarbonPEEK, ULTEM, PPSU using FDM (FFF) technology. The results of 3D printing with high-performance polymers using different conditions of the heated chamber are presented. Conclusions about the advantages of a heated chamber are made.

RSC Advances ◽  
2016 ◽  
Vol 6 (46) ◽  
pp. 40002-40009 ◽  
Author(s):  
Linghui Yu ◽  
Yi Jin ◽  
Y. S. Lin

A study on Al2O3/poly(vinyl alcohol) coated polypropylene separators is presented providing insights into designing high-performance LIB separators with improved safety.


2019 ◽  
Vol 487 ◽  
pp. 165356 ◽  
Author(s):  
Zhiheng Zhang ◽  
Jiaying Jin ◽  
Liping Liang ◽  
Baixing Peng ◽  
Yongsheng Liu ◽  
...  

Alloy Digest ◽  
1970 ◽  
Vol 19 (12) ◽  

Abstract CRM MOLYBDENUM-50 RHENIUM is a high-melting-point alloy for applications such as electronics tube components, electrical contacts, thermionic converters, thermocouples, heating elements and rocket thrusters. All products are produced by powder metallurgy. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Mo-11. Producer or source: Chase Brass & Copper Company Inc..


Alloy Digest ◽  
1970 ◽  
Vol 19 (8) ◽  

Abstract CRM RHENIUM is a commercially pure, high-melting-point metal for applications such as electronics tube components, electrical contacts, thermionic converters, thermocouples, heating elements and rocket thrusters. All products are produced by powder metallurgy. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Re-1. Producer or source: Chase Brass & Copper Company Inc..


Alloy Digest ◽  
2020 ◽  
Vol 69 (10) ◽  

Abstract Wieland Duro Tungsten is unalloyed tungsten produced from pressed-and-sintered billets. The high melting point of tungsten makes it an obvious choice for structural applications exposed to very high temperatures. Tungsten is used at lower temperatures for applications that can benefit from its high density, high modulus of elasticity, or radiation shielding capability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on machining. Filing Code: W-34. Producer or source: Wieland Duro GmbH.


2019 ◽  
Vol 103 (2) ◽  
pp. 889-898 ◽  
Author(s):  
Maoqiao Xiang ◽  
Miao Song ◽  
Qingshan Zhu ◽  
Chaoquan Hu ◽  
Yafeng Yang ◽  
...  

Solar Energy ◽  
2005 ◽  
Vol 79 (3) ◽  
pp. 332-339 ◽  
Author(s):  
Akira Hoshi ◽  
David R. Mills ◽  
Antoine Bittar ◽  
Takeo S. Saitoh

1996 ◽  
Vol 441 ◽  
Author(s):  
W. K. Liu ◽  
X. M. Fang ◽  
P. J. McCann ◽  
M. B. Santos

AbstractRHEED intensity oscillations observed during MBE growth of CaF2 on Si(111) and PbSe on CaF2/Si(111) are presented. The effects of substrate temperature and initial nucleation procedure are investigated. Strong temporal oscillations of the specular beam intensity are found to be most readily observed at temperatures below 200°C for both CaF2 and PbSe. Growth rates measured as a function of cell temperatures exhibit Arrhenius behavior with activation energies of 5.0 eV and 1.93 eV for CaF2 and PbSe, respectively. The relatively high activation energy obtained for CaF2 is consistent with the high melting point and sublimation energy of ionic fluorides.


1992 ◽  
Vol 7 (10) ◽  
pp. 2747-2755 ◽  
Author(s):  
C.G. McKamey ◽  
P.F. Tortorelli ◽  
J.H. DeVan ◽  
C.A. Carmichael

MoSi2 is a promising high-temperature material with low density (6.3 g/cm3), high melting point (2020 °C), and good oxidation resistance at temperatures to about 1900 °C. However, in the intermediate temperature range between 400 and 600 °C, it is susceptible to a “pest” reaction which causes catastrophic disintegration by a combination of oxidation and fracture. In this study, we have used polycrystalline MoSi2, produced by arc-casting of the pure elements and by cold and hot pressing of alloy powders, to characterize the pest reaction and to determine the roles of composition, grain or phase boundaries, and physical defects on the oxidation and fracture of specimens exposed to air at 500 °C. It was found that pest disintegration occurs through transport of oxygen into the interior of the specimen along pre-existing cracks and/or pores, where it reacts to form MoO3 and SiO2. The internal stress produced during the formation of MoO3 results in disintegration to powder. Near the stoichiometric ratio, the susceptibility to pest disintegration increases with increasing molybdenum content and with decreasing density. Silicon-rich alloys were able to form protective SiO2 and showed no indication of disintegration, even at densities as low as 60%.


Sign in / Sign up

Export Citation Format

Share Document