Canonical rules

2009 ◽  
Vol 74 (4) ◽  
pp. 1171-1205 ◽  
Author(s):  
Emil Jeřábek

AbstractWe develop canonical rules capable of axiomatizing all systems of multiple-conclusion rules over K4 or IPC, by extension of the method of canonical formulas by Zakharyaschev [37]. We use the framework to give an alternative proof of the known analysis of admissible rules in basic transitive logics, which additionally yields the following dichotomy: any canonical rule is either admissible in the logic, or it is equivalent to an assumption-free rule. Other applications of canonical rules include a generalization of the Blok–Esakia theorem and the theory of modal companions to systems of multiple-conclusion rules or (unitary structural global) consequence relations, and a characterization of splittings in the lattices of consequence relations over monomodal or superintuitionistic logics with the finite model property.

1992 ◽  
Vol 57 (4) ◽  
pp. 1377-1402 ◽  
Author(s):  
Michael Zakharyaschev

This paper presents a new technique for handling modal logics with transitive frames, i.e. extensions of the modal system K4. In effect, the technique is based on the following fundamental result, to be obtained below in §3.Given a formula φ, we can effectively construct finite frames 1, …, n which completely characterize the set of all transitive general frames refuting φ. More exactly, an arbitrary general frame refutes φ iff contains a (not necessarily generated) subframe such that (1) i, for some i ϵ {1, …, n}, is a p-morphic image of (after Fine [1985] we say is subreducible to i), (2) is cofinal in , and (3) every point in that is not in does not get into “closed domains” which are uniquely determined in i, by φ.This purely technical result has, as it turns out, rather unexpected and profound consequences. For instance, it follows at once that if φ determines no closed domains in the frames 1, …, n associated with it, then the normal extension of K4 generated by φ has the finite model property and so is decidable. Moreover, every normal logic axiomatizable by any (even infinite) set of such formulas φ also has the finite model property. This observation would not possibly merit any special attention, were it not for the fact that the class of such logics contains almost all the standard systems within the field of K4 (at least all those mentioned by Segerberg [1971] or Bull and Segerberg [1984]), all logics containing S4.3, all subframe logics of Fine [1985], and a continuum of other logics as well.


1991 ◽  
Vol 15 (1) ◽  
pp. 61-79
Author(s):  
Dimiter Vakarelov

One of the main results of the paper is a characterization of certain kind similarity relations in Pawlak knowledge representation systems by means of first order sentences. As an application we obtain a complete finite axiomatization of the corresponding poly modal logic, called in the paper MLSim. It is proved that MLSim possesses finite model property and is decidable.


1997 ◽  
Vol 62 (3) ◽  
pp. 950-975 ◽  
Author(s):  
Michael Zakharyaschev

This paper, a continuation of the series [22, 24], presents two methods for establishing the finite model property (FMP, for short) of normal modal logics containing K4. The methods are oriented mainly to logics represented by their canonical axioms and yield for such axiomatizations several sufficient conditions of FMP. We use them to obtain solutions to two well known open FMP problems. Namely, we prove that• every normal extension of K4 with modal reduction principles has FMP and• every normal extension of S4 with a formula of one variable has FMP.These results are interesting not only from the technical point of view. Actually, they reveal important properties of a quite natural family of modal logics—formulas of one variable and, in particular, modal reduction principles are typical axioms in modal logic. Unfortunately, the technical apparatus developed in this paper is applicable only to logics with transitive frames, and the situation with FMP of extensions of K by modal reduction principles, even by axioms of the form □np → □mp still remains unclear. I think at present this is one of the major challenges in completeness theory.The language of the canonical formulas, introduced in [22] (I'll refer to that paper as Part I), is a way of describing the “geometry and topology” of formulas' refutation (general) frames by means of some finite refutation patterns.


2016 ◽  
Vol 81 (1) ◽  
pp. 284-315 ◽  
Author(s):  
GURAM BEZHANISHVILI ◽  
NICK BEZHANISHVILI ◽  
ROSALIE IEMHOFF

AbstractWe introduce stable canonical rules and prove that each normal modal multi-conclusion consequence relation is axiomatizable by stable canonical rules. We apply these results to construct finite refutation patterns for modal formulas, and prove that each normal modal logic is axiomatizable by stable canonical rules. We also define stable multi-conclusion consequence relations and stable logics and prove that these systems have the finite model property. We conclude the paper with a number of examples of stable and nonstable systems, and show how to axiomatize them.


1999 ◽  
Vol 45 (4) ◽  
pp. 505-520 ◽  
Author(s):  
Vladimir V. Rybakov ◽  
Vladimir R. Kiyatkin ◽  
Tahsin Oner

2015 ◽  
Vol 65 (4) ◽  
Author(s):  
Giovanna D’Agostino ◽  
Giacomo Lenzi

AbstractIn this paper we consider the alternation hierarchy of the modal μ-calculus over finite symmetric graphs and show that in this class the hierarchy is infinite. The μ-calculus over the symmetric class does not enjoy the finite model property, hence this result is not a trivial consequence of the strictness of the hierarchy over symmetric graphs. We also find a lower bound and an upper bound for the satisfiability problem of the μ-calculus over finite symmetric graphs.


Author(s):  
Ronald Harrop

In this paper we will be concerned primarily with weak, strong and simple models of a propositional calculus, simple models being structures of a certain type in which all provable formulae of the calculus are valid. It is shown that the finite model property defined in terms of simple models holds for all calculi. This leads to a new proof of the fact that there is no general effective method for testing, given a finite structure and a calculus, whether or not the structure is a simple model of the calculus.


Author(s):  
Fei Liang ◽  
Zhe Lin

Implicative semi-lattices (also known as Brouwerian semi-lattices) are a generalization of Heyting algebras, and have been already well studied both from a logical and an algebraic perspective. In this paper, we consider the variety ISt of the expansions of implicative semi-lattices with tense modal operators, which are algebraic models of the disjunction-free fragment of intuitionistic tense logic. Using methods from algebraic proof theory, we show that the logic of tense implicative semi-lattices has the finite model property. Combining with the finite axiomatizability of the logic, it follows that the logic is decidable.


2012 ◽  
Vol 77 (3) ◽  
pp. 729-765 ◽  
Author(s):  
Emanuel Kieroński ◽  
Martin Otto

AbstractWe study first-order logic with two variables FO2 and establish a small substructure property. Similar to the small model property for FO2 we obtain an exponential size bound on embedded substructures, relative to a fixed surrounding structure that may be infinite. We apply this technique to analyse the satisfiability problem for FO2 under constraints that require several binary relations to be interpreted as equivalence relations. With a single equivalence relation, FO2 has the finite model property and is complete for non-deterministic exponential time, just as for plain FO2. With two equivalence relations, FO2 does not have the finite model property, but is shown to be decidable via a construction of regular models that admit finite descriptions even though they may necessarily be infinite. For three or more equivalence relations, FO2 is undecidable.


Sign in / Sign up

Export Citation Format

Share Document