A Novel Approach in Symmetric Key Image Encryption Using Genetic Algorithm

2016 ◽  
Vol 14 (0) ◽  
pp. 91
Author(s):  
Subhajit Das ◽  
Satyendra Nath Mandal
Cryptography ◽  
2020 ◽  
pp. 193-213
Author(s):  
Srinivasa K. G. ◽  
Siddesh G. M. ◽  
Srinidhi Hiriyannaiah ◽  
Anusha Morappanavar ◽  
Anurag Banerjee

The world of digital communication consists of various applications which uses internet as the backbone for communication. These applications consist of data related to the users of the application, which is confidential and integrity needs to be maintained to protect against unauthorized access and use. In the information hiding field of research, Cryptography is one of the wide techniques used to provide security to the internet applications that overcome the challenges like confidentiality, integrity, authentication services etc. In this paper, we present a novel approach on symmetric key cryptography technique using genetic algorithm that is implemented on CUDA architecture.


Author(s):  
Srinivasa K. G. ◽  
Siddesh G. M. ◽  
Srinidhi Hiriyannaiah ◽  
Anusha Morappanavar ◽  
Anurag Banerjee

The world of digital communication consists of various applications which uses internet as the backbone for communication. These applications consist of data related to the users of the application, which is confidential and integrity needs to be maintained to protect against unauthorized access and use. In the information hiding field of research, Cryptography is one of the wide techniques used to provide security to the internet applications that overcome the challenges like confidentiality, integrity, authentication services etc. In this paper, we present a novel approach on symmetric key cryptography technique using genetic algorithm that is implemented on CUDA architecture.


2021 ◽  
Vol 183 ◽  
pp. 108041
Author(s):  
Xiuli Chai ◽  
Xiangcheng Zhi ◽  
Zhihua Gan ◽  
Yushu Zhang ◽  
Yiran Chen ◽  
...  

2020 ◽  
Vol 32 ◽  
pp. 03009
Author(s):  
Vishwanath Chikkareddi ◽  
Anurag Ghosh ◽  
Preksha Jagtap ◽  
Sahil Joshi ◽  
Jeel Kanzaria

One of the important application of image encryption is storing confidential and important images on a local device or a database in such a way that only the authorized party can view or perceive it. The current image encryption technique employs the genetic algorithm to increase confusion in the image, but compromises in time and space complexity. The other method employs chaos or pseudo random number generating systems which have fast and highly sensitive keys but fails to make the image sufficiently noisy and is risky due to its deterministic nature. We propose a technique which employs the non-deterministic, optimizing power of genetic algorithm and the space efficiency and key sensitivity of chaotic systems into a unified, efficient algorithm which will retain the merits of both the methods whereas tries to minimize their demerits in a software system. The encryption process proceeds in two steps, generating two keys. First, an encryption sequence is generated using Lorenz Chaotic system of differential equation. The seed values used are the user’s actual key having key sensitivity of 10-14. Second, the encrypted image’s genetic encryption sequence is generated which will result in an encrypted image with entropy value greater than 7.999 thus ensuring the image is very noisy. Proposed technique uses variations of Lorenz system seed sets to generate all random mutations and candidate solutions in Genetic encryption. Since only the seed sets leading to desired solution is stored, space efficiency is higher compared to storing the entire sequences. Using this image encryption technique we will ensure that the images are hidden securely under two layers of security, one chaotic and other non-deterministic.


Sign in / Sign up

Export Citation Format

Share Document