scholarly journals Алгоритм предварительного анализа дифракционных спектров для нанокомпозитных материалов с примесью массивной фракции

2022 ◽  
Vol 92 (1) ◽  
pp. 155
Author(s):  
О.А. Алексеева ◽  
А.А. Набережнов

This contribution is devoted to discussion of questions related to the influence of a possible contribution from a bulk material on the lineshape of elastic peaks observed in diffraction experiments at neutron and / or X-ray radiation scattering on nanoporous matrices containing substances embedded into their porous space (channels). The proposed algorithm permits to estimate the input of massive component into diffraction peaks using the analysis of the experimentally observed distortions of the lineshape of the Bragg peaks. This preliminary analysis greatly simplifies the profile analysis of nanocomposite diffraction patterns, especially for molecular sieves based on powders of SBA-15, MCM-41, MCM-48, etc. types.

2020 ◽  
Vol 86 (6) ◽  
pp. 29-35
Author(s):  
V. P. Sirotinkin ◽  
O. V. Baranov ◽  
A. Yu. Fedotov ◽  
S. M. Barinov

The results of studying the phase composition of advanced calcium phosphates Ca10(PO4)6(OH)2, β-Ca3(PO4)2, α-Ca3(PO4)2, CaHPO4 · 2H2O, Ca8(HPO4)2(PO4)4 · 5H2O using an x-ray diffractometer with a curved position-sensitive detector are presented. Optimal experimental conditions (angular positions of the x-ray tube and detector, size of the slits, exposure time) were determined with allowance for possible formation of the impurity phases during synthesis. The construction features of diffractometers with a position-sensitive detector affecting the profile characteristics of x-ray diffraction peaks are considered. The composition for calibration of the diffractometer (a mixture of sodium acetate and yttrium oxide) was determined. Theoretical x-ray diffraction patterns for corresponding calcium phosphates are constructed on the basis of the literature data. These x-ray diffraction patterns were used to determine the phase composition of the advanced calcium phosphates. The features of advanced calcium phosphates, which should be taken into account during the phase analysis, are indicated. The powder of high-temperature form of tricalcium phosphate strongly adsorbs water from the environment. A strong texture is observed on the x-ray diffraction spectra of dicalcium phosphate dihydrate. A rather specific x-ray diffraction pattern of octacalcium phosphate pentahydrate revealed the only one strong peak at small angles. In all cases, significant deviations are observed for the recorded angular positions and relative intensity of the diffraction peaks. The results of the study of experimentally obtained mixtures of calcium phosphate are presented. It is shown that the graphic comparison of experimental x-ray diffraction spectra and pre-recorded spectra of the reference calcium phosphates and possible impurity phases is the most effective method. In this case, there is no need for calibration. When using this method, the total time for analysis of one sample is no more than 10 min.


2011 ◽  
Vol 217-218 ◽  
pp. 1743-1746
Author(s):  
Xing Long Guo

TiO2 with 20nm in diameter have been prepared by using magnetron sputtering technique. The structure of these powers was determined by X-ray diffraction experiments. The average grain size and particle size in these powers were measured by the line profile analysis method of X-ray diffraction patterns and by scan electron microscopy, respectively. The thin films were investigated by using XRD, SEM measurements.


1997 ◽  
Vol 12 (1) ◽  
pp. 161-174 ◽  
Author(s):  
W. Staiger ◽  
A. Michel ◽  
V. Pierron-Bohnes ◽  
N. Hermann ◽  
M. C. Cadeville

We find that the [Ni3.2nmPt1.6nm] × 15 and [Ni3.2nmPt0.8nm] × 15 multilayers are semicoherent and display a columnar morphology. From both the period of the moir’e fringes and the positions of the diffraction peaks in electronic (plan-view and crosssection geometries) and x-ray diffraction patterns, one deduces that the nickel is relaxed (at least in the error bars of all our measurements), whereas the platinum remains slightly strained (≈−1%). The interfaces are sharp; no intermixing takes place giving rise to neat contrasts in transmission electron microscopy (TEM) and to high intensities of the superlattice peaks in the growth direction in both diffraction techniques. The relaxation of the interfacial misfit occurs partially through misfit dislocations, partially through the strain of platinum. A quasiperiodic twinning occurs at the interfaces, the stacking fault which forms the twin being the most often located at the interface Pt/Ni, i.e., when a Pt layer begins to grow on the Ni layer. The simulation of the θ/2θ superlattice peak intensities takes into account the columnar microstructure. It shows that the roughness is predominantly at medium scale with a fluctuation of about 12.5% for Ni layers and negligible for Pt layers.


1993 ◽  
Vol 37 ◽  
pp. 351-358
Author(s):  
Zenjxo Yajima ◽  
Ken-ichi Ishikawa ◽  
Toshihiko Sasaki ◽  
Yukio Hirose

X-ray line broadening is caused by variations in lattice strain and small particle size. When hydrogen is introduced into the steel by the electrolytica! method, structural changes are observed. X-ray line broadening is a suitable measurement in such cases. The Warren and Averbach Fourier analysis is a good method for line broadening studies. In this method, strain and particle size effects can be separated because broadening due to particle size is independent of order of the diffraction peaks, while broadening due to strain is not.


1996 ◽  
Vol 275 (1-2) ◽  
pp. 40-43 ◽  
Author(s):  
L. Bimbault ◽  
K.F. Badawi ◽  
Ph. Goudeau ◽  
V. Branger ◽  
N. Durand

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 691
Author(s):  
Bertalan Jóni ◽  
Éva Ódor ◽  
Mia Maric ◽  
Wolfgang Pantleon ◽  
Tamás Ungár

A novel X-ray diffraction-based method and computer program X-TEX has been developed to determine the microstructure in individual texture components of polycrystalline, textured materials. Two different approaches are presented. In the first one, based on the texture of the specimen, the X-TEX software provides optimized specimen orientations for X-ray diffraction experiments in which diffraction peaks consist of intensity contributions stemming from grain populations of separate texture components in the specimen. Texture-specific diffraction patterns can be created by putting such peaks together from different measurements into an artificial pattern for each texture component. In the second one, the X-TEX software can determine the intensity contributions of different texture components to diffraction peaks measured in a particular sample orientation. According to this, peaks belonging mainly to one of the present texture components are identified and grouped into the same quasi-phase during the evaluation procedure. The X-TEX method was applied and tested on tensile-deformed, textured, commercially pure titanium samples. The patterns were evaluated by the convolutional multiple whole profile (CMWP) procedure of line profile analysis for dislocation densities, dipole character, slip systems and subgrain size for three different texture components of the Ti specimens. Significant differences were found in the microstructure evolution in the two major and the random texture components. The dislocation densities were discussed by the Taylor model of work hardening.


1989 ◽  
Vol 169 ◽  
Author(s):  
Ashok Kumar ◽  
L. Ganapathi ◽  
J. Narayan

AbstractWe have prepared highly textured superconducting thin films from Bi1.5pb0.5Ca3Sr2Cu4Ox (2324) on (100) YS-ZrO2 (Yttria stabilized zirconia) and Bi1.5Pb0.5Ca2Sr2Cu3°x (2223) on LaAlC-3 (100) and MgO (100) substrates at 650°C by pulsed laser ablation method.These films showed 2212 type of phase of the (BiPb)2(Ca,Sr)n+1CunO2n+4+5 family with onset transition temperature ( Tc ) ~ 110 K, confirming our earlier observations of 110 K superconductivity in a n = 2 bulk material. Thin films deposited from 2324 bulk target on YS-Z1O2 showed zero resistance temperature (Tco ) of 68 K but post annealing for one hour at 400°C in oxygen improved Tco from 68 K to 82 K. Thin films from 2223 target on LaAlO3 ( 100 ) and MgO ( 100 ) exhibited a Tco of 65 K and 74 K respectively while onset remained the same at 110 K. Further annealing at 400°C for one hour in oxygen did not show any improvement in Tco. X-ray diffraction (XRD), scanning electron microscopy (SEM) and Rutherford backscattering (RBS) channeling studies were performed on these films for correlation between crystal structure, microstructure and superconducting properties. X-ray diffraction patterns indicated 2212 type phase with a= 5.39 Å and c=30.76 Å; preferential orientation of c-axis perpendicular to the substrate was observed. The lattice parameter and x-ray diffraction patterns were found to be invariant with annealing treatments.


1989 ◽  
Vol 4 (2) ◽  
pp. 70-73 ◽  
Author(s):  
G.J. Stanisz ◽  
J.M. Holender ◽  
J. Sołtys

AbstractA quantitative phase analysis often requires advanced numerical studies to determine the appropriate intensity values. In this paper the method of fitting analytical functions to the experimental profile is applied to X-ray powder diffraction patterns obtained with FeK radiation. In the present work, the authors examine some problems connected with numerical studies, especially the function describing the experimental profile. The usefulness of the α2 elimination procedure and the angular dependence FWHM are also examined.


2001 ◽  
Vol 16 (4) ◽  
pp. 198-204 ◽  
Author(s):  
C. K. Lowe-Ma ◽  
W. T. Donlon ◽  
W. E. Dowling

Retained austenite is an important characteristic of properly heat-treated steel components, particularly gears and shafts, that will be subjected to long-term use and wear. Normally, either X-ray diffraction or optical microscopy techniques are used to determine the volume percent of retained austenite present in steel components subjected to specific heat-treatment regimes. As described in the literature, a number of phenomenological, experimental, and calculation factors can influence the volume fraction of retained austenite determined from X-ray diffraction measurements. However, recent disagreement between metallurgical properties, microscopy, and service laboratory values for retained austenite led to a re-evaluation of possible reasons for the apparent discrepancies. Broad, distorted X-ray peaks from un-tempered martensite were found to yield unreliable integrated intensities whereas diffraction peaks from tempered samples were more amenable to profile fitting with standard shape functions, yielding reliable integrated intensities. Retained austenite values calculated from reliable integrated intensities were found to be consistent with values obtained by Rietveld refinement of the diffraction patterns. The experimental conditions used by service laboratories combined with a poor choice of diffraction peaks were found to be sources of retained austenite values containing significant bias.


1995 ◽  
Vol 10 (3) ◽  
pp. 198-203 ◽  
Author(s):  
Neil E. Johnson ◽  
Sidney S. Pollack ◽  
Elizabeth A. Frommell ◽  
Patricia A. Eldredge

A synthetic catalyst precursor formed by sulfiding ferrihydrite (Fe3+O(OH)) in the presence of a hydrogen donor produces X-ray diffraction patterns resembling a mixture of both naturally occurring FeS2 polymorphs marcasite and pyrite. The diffraction peaks display a differential broadening, however, wherein only those peaks coincident to both marcasite and pyrite are strong and sharp, a feature that cannot be accounted for by a simple physical mixture. The broadening is analogous to that found in hexagonal cobalt, where occasional stacking faults produce interstratification of the hexagonal and cubic close-packed forms, resulting in strongly coherent diffraction only along the stacking direction. The crystal structures of marcasite and pyrite are virtually identical if viewed perpendicular to the (101) and (001) planes, respectively. Calculation of diffraction patterns based upon models of interstratifying marcasite and pyrite layers along these planes demonstrates that a sequence with marcasite-to-pyrite and pyrite-to-marcasite stacking fault probabilities of 0.22 provides a good fit to the experimental pattern. This interstratified material is a precursor to a species that shows catalytic activity for cleaving C-C bonds between aromatic rings and benzylic carbon atoms at low (<350 °C) temperatures.


Sign in / Sign up

Export Citation Format

Share Document