scholarly journals Метод определения характеристик перемежающейся обобщенной синхронизации, основанный на вычислении вероятности наблюдения синхронного режима

Author(s):  
О.И. Москаленко ◽  
А.А. Короновский ◽  
А.О. Сельский ◽  
Е.В. Евстифеев

Method to define the characteristic phases in the behavior of unidirectionally coupled systems being near the boundary of the generalized chaotic synchronization regime onset, based on calculation of the probability of the synchronous regime observation in ensemble of coupled systems is proposed. Using the example of unidirectionally coupled Rössler systems in the band chaos regime we show its efficiency in comparison with the other known methods for detection the characteristics of intermittent generalized synchronization.

2013 ◽  
Vol 732 ◽  
Author(s):  
Rick Salmon

AbstractOrdinary two-dimensional turbulence corresponds to a Hamiltonian dynamics that conserves energy and the vorticity on fluid particles. This paper considers coupled systems of two-dimensional turbulence with three distinct governing dynamics. One is a Hamiltonian dynamics that conserves the vorticity on fluid particles and a quantity analogous to the energy that causes the system members to develop a strong correlation in velocity. The other two dynamics considered are non-Hamiltonian. One conserves the vorticity on particles but has no conservation law analogous to energy conservation; the other conserves energy and enstrophy but it does not conserve the vorticity on fluid particles. The coupled Hamiltonian system behaves like two-dimensional turbulence, even to the extent of forming isolated coherent vortices. The other two dynamics behave very differently, but the behaviours of all four dynamics are accurately predicted by the methods of equilibrium statistical mechanics.


2010 ◽  
Vol 24 (29) ◽  
pp. 5675-5682 ◽  
Author(s):  
YU-LING FENG ◽  
XI-HE ZHANG ◽  
ZHI-GANG JIANG ◽  
KE SHEN

This paper investigates chaotic synchronization in the generalized sense in two resistive-capacitive-inductive-shunted (RCL-shunted) Josephson junctions (RCLSJJs) by using the means of unidirectionally coupling. The numerical simulations confirm that the generalized synchronization of chaos in these two systems can be achieved with a suitable coupling intensity when the maximum condition Lyapunov exponent (MCLE) is negative. Also, the auxiliary system approach is used to detect the existence of the generalized synchronization.


2001 ◽  
Vol 11 (06) ◽  
pp. 1723-1735 ◽  
Author(s):  
GUO-QUN ZHONG ◽  
KIM-FUNG MAN ◽  
KING-TIM KO

In this paper a variety of uncertainty phenomena in chaos synchronization, which are caused by the sensitive dependence on initial conditions and coupling strength, are numerically investigated. Two identical Chua's circuits are considered for both mutually- and unidirectionally-coupled systems. It is found that initial states of the system play an important role in chaos synchronization. Depending on initial conditions, distinct behaviors, such as in-phase synchronization, anti-phase synchronization, oscillation-quenching, and bubbling of attractors, may occur. Based on the findings, we clarify that the systems, which satisfy the standard synchronization criterion, do not necessarily operate in a synchronization regime.


2004 ◽  
Vol 18 (23) ◽  
pp. 1135-1155 ◽  
Author(s):  
MARZENA CISZAK ◽  
RAÚL TORAL ◽  
CLAUDIO MIRASSO

This paper reviews our recent work on the synchronization of excitable systems in a master–slave configuration and when the slave system includes a delayed self-coupling term. Particularly, we address the existence of the so-called anticipated synchronization, i.e. a dynamical regime in which the slave system is able to reproduce in advance the evolution of the master. This is most remarkable since the anticipated synchronization appears even when the excitable spikes are induced by random terms, such as white noise. After providing a short review of the general theory of synchronization as well as the main features of excitable systems, we present numerical and experimental results in coupled excitable systems of the FitzHugh–Nagumo type driven by different types of noise. The experiments have been done in electronic implementations of the model equations. We present the conditions (values of the coupling intensity and delay time) for which the anticipated synchronization regime is a stable one and show that it is possible to increase the anticipation time by using a cascade of several coupled systems. We use a particular limit of the FitzHugh–Nagumo system, as well as a simple excitable model, to give evidence that the physical reason for the existence of anticipated synchronization is the lowering of the excitability threshold of the slave due to the coupling. Finally, we propose a hypothesis for a possible explanation of the zero-lag synchronization observed in some real neuron systems.


2011 ◽  
Vol 25 (21) ◽  
pp. 2879-2887
Author(s):  
XING-YUAN WANG ◽  
MING-JUN WANG

In this paper, the drive system and the response system can be in a state of linear generalized synchronization via transmitting single signal. By means of a transitional system, the response system is obtained by variable replacement method. Chen system and hyperchaotic Chen system are used as examples in numerical simulations. Simulation results show the effectiveness of the method.


2011 ◽  
Vol 25 (09) ◽  
pp. 1283-1292 ◽  
Author(s):  
MING-JUN WANG ◽  
XING-YUAN WANG

In the paper, generalized chaotic synchronization of a class of fractional order systems is studied. Based on the stability theory of linear fractional order systems, a generalized synchronization scheme is presented, and theoretical analysis is provided to verify its feasibility. The proposed method can realize generalized synchronization not only of fractional order systems with same dimension, but also of systems with different dimensions. Besides, the function relation of generalized synchronization can be linear or nonlinear. Numerical simulations show the effectiveness of the scheme.


Sign in / Sign up

Export Citation Format

Share Document