scholarly journals Асимптотическая стадия роста автокаталитических III-V нитевидных нанокристаллов методом молекулярно-пучковой эпитаксии

Author(s):  
В.Г. Дубровский ◽  
М.В. Рылькова ◽  
А.С. Соколовский ◽  
Ж.В. Соколова

A new analytic theory is developed for asymptotic stage of self-catalyzed growth of III-V nanowires (NWs) by molecular beam epitaxy (MBE), where NWs collect all group III atoms deposited from vapor. The shadowing NW length is derived which corresponds for the full shadowing of the substrate surface in MBE. The NW length and radius are derived depending on the effective deposition thickness and MBE growth parameters. It is shown that the NW length increases, and their length decreases with decreasing the array pitch and increasing the V/III flux ratio.

1999 ◽  
Vol 4 (S1) ◽  
pp. 858-863
Author(s):  
Huajie Chen ◽  
A. R. Smith ◽  
R. M. Feenstra ◽  
D. W. Greve ◽  
J. E. Northrup

InGaN alloys with indium compositions ranging from 0–40% have been grown by molecular beam epitaxy. The dependence of the indium incorporation on growth temperature and group III/group V ratio has been studied. Scanning tunneling microscopy images, interpreted using first-principles theoretical computations, show that there is strong indium surface segregation on InGaN. Based on this surface segregation, a qualitative model is proposed to explain the observed indium incorporation dependence on the growth parameters.


Crystals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 308 ◽  
Author(s):  
ChengDa Tsai ◽  
Ikai Lo ◽  
YingChieh Wang ◽  
ChenChi Yang ◽  
HongYi Yang ◽  
...  

Indium-incorporation with InxGa1-xN layers on GaN-microdisks has been systematically studied against growth parameters by plasma-assisted molecular beam epitaxy. The indium content (x) of InxGa1-xN layer increased to 44.2% with an In/(In + Ga) flux ratio of up to 0.6 for a growth temperature of 620 °C, and quickly dropped with a flux ratio of 0.8. At a fixed In/(In + Ga) flux ratio of 0.6, we found that the indium content decreased as the growth temperature increased from 600 °C to 720 °C and dropped to zero at 780 °C. By adjusting the growth parameters, we demonstrated an appropriate InxGa1-xN layer as a buffer to grow high-indium-content InxGa1-xN/GaN microdisk quantum wells for micro-LED applications.


1998 ◽  
Vol 537 ◽  
Author(s):  
Huajie Chen ◽  
A. R. Smith ◽  
R. M. Feenstra ◽  
D. W. Greve ◽  
J. E. Northrup

AbstractInGaN alloys with indium compositions ranging from 0–40% have been grown by molecular beam epitaxy. The dependence of the indium incorporation on growth temperature and group III/group V ratio has been studied. Scanning tunneling microscopy images, interpreted using first-principles theoretical computations, show that there is strong indium surface segregation on InGaN. Based on this surface segregation, a qualitative model is proposed to explain the observed indium incorporation dependence on the growth parameters.


1997 ◽  
Vol 26 (11) ◽  
pp. 1266-1269 ◽  
Author(s):  
J. D. Mackenzie ◽  
L. Abbaschian ◽  
C. R. Abernathy ◽  
S. M. Donovan ◽  
S. J. Pearton ◽  
...  

VLSI Design ◽  
1998 ◽  
Vol 6 (1-4) ◽  
pp. 405-408
Author(s):  
Vamsee K. Pamula ◽  
R. Venkat

In a recent work, beating in the reflection high energy electron diffraction (RHEED) intensity oscillations were observed during molecular beam epitaxial (MBE) growth of GaAs with Sn as a surfactant. The strength of beating is found to be dependent on the Sn submonolayer coverage with strong beating observed for 0.4 monolayer coverage. For a fixed temperature and flux ratio (Ga to As), the period of oscillation decreases with increasing Sn coverage. In this work, we have developed a rate equation model of growth to investigate this phenomenon. In our model, the GaAs covered by the Sn is assumed to grow at a faster rate compared to the GaAs not covered by Sn. Assuming that the electron beams reflected from the Sn covered surface and the rest of the surface are incoherent, the results of the dependence of the RHEED oscillations on Sn submonolayer coverages for various Sn coverages were obtained and compared with experimental data and the agreement is good.


1998 ◽  
Vol 512 ◽  
Author(s):  
N. Grandjean ◽  
M. Leroux ◽  
J. Massies ◽  
M. Mesrine ◽  
P. Lorenzini

ABSTRACTAmmonia as nitrogen precursor has been used to grow III-V nitrides by molecular beam epitaxy (MBE) on c-plane sapphire substrates. The efficiency of NH3 has been evaluated allowing the determination of the actual V/III flux ratio used during the GaN growth. The effects of the V/III ratio variation on the GaN layer properties have been investigated by photoluminescence (PL), Hall measurements, atomic force microscopy (AFM), and secondary ion mass spectroscopy (SIMS). It is found that a high V/III ratio leads to the best material quality. Optimized GaN thick buffer layers have been used to grow GaN/AlGaN quantum well (QW) heterostructures. Their PL spectra exhibit well resolved emission peaks for QW thicknesses varying from 3 to 15 monolayers. From the variation of the QW energies as a function of well width, a piezoelectric field of 450 kV/cm is deduced.


2003 ◽  
Vol 93 (9) ◽  
pp. 5274-5281 ◽  
Author(s):  
Muhammad B. Haider ◽  
Costel Constantin ◽  
Hamad Al-Brithen ◽  
Haiqiang Yang ◽  
Eugen Trifan ◽  
...  

1991 ◽  
Vol 237 ◽  
Author(s):  
T. George ◽  
R. W. Fathauer

ABSTRACTThe stability of CoSi2/Si interfaces was examined in this study using columnar suicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were co-deposited (1:7 flux ratio) using molecular beam epitaxy at 800°C and the resulting columnar suicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800°C results in the growth of the buried suicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The columns' sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer.In the second set of experiments, annealing of a 250nm-thick buried columnar layer at 1000°C under a 100nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker (500nm) Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The' high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.


Sign in / Sign up

Export Citation Format

Share Document