scholarly journals Ламинарный хаос в связанных системах с запаздыванием

Author(s):  
Д.Д. Кульминский ◽  
В.И. Пономаренко ◽  
М.Д. Прохоров

The possibility of the existence of laminar chaos in coupled time-delayed feedback systems is investigated. The cases of unidirectional and mutual coupling of time-delay systems are considered. It is shown for the first time that laminar chaos can exist not only in a system with a variable delay time, but also in a system with a constant delay time, if it is coupled with a system in the regime of laminar chaos.

Author(s):  
Yang Zhu ◽  
Miroslav Krstic

This introductory chapter provides an overview of time-delay systems. Time-delay systems, also called systems with after-effect or dead-time, hereditary systems, equations with deviating argument, or differential-difference equations, are ubiquitous in practice. Some representative examples are found in chemical industry, electrical and mechanical engineering, biomedical engineering, and management and traffic science. The most common forms of time delay in dynamic phenomena that arise in engineering practice are actuator and sensor delays. Due to the time it takes to receive the information needed for decision-making, to compute control decisions, and to execute these decisions, feedback systems often operate in the presence of delays. The chapter then illustrates the possible methods in control of time-delay systems. This book develops adaptive and robust predictor feedback laws for the compensation of the five uncertainties for general linear time-invariant (LTI) systems with input delays.


Author(s):  
Д.Д. Кульминский ◽  
В.И. Пономаренко ◽  
М.Д. Прохоров

For the first time, the phenomenon of laminar chaos is experimentally studied in a radio engineering generator with time-delayed feedback, the delay time of which is modulated by an external harmonic signal. Regions of various regimes of laminar chaos are constructed on the plane of the parameters of modulating signal. The nonlinear function of generator is reconstructed in the regime of laminar chaos.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Shu-An He ◽  
I-Kong Fong

Linear time-delay systems with transcendental characteristic equations have infinitely many eigenvalues which are generally hard to compute completely. However, the spectrum of first-order linear time-delay systems can be analyzed with the Lambert function. This paper studies the stability and state feedback stabilization of first-order linear time-delay system in detail via the Lambert function. The main issues concerned are the rightmost eigenvalue locations, stability robustness with respect to delay time, and the response performance of the closed-loop system. Examples and simulations are presented to illustrate the analysis results.


1995 ◽  
Vol 115 (1) ◽  
pp. 167-168
Author(s):  
Tohru Takahashi ◽  
Yoshirou Tajima ◽  
Kohji Shirane ◽  
Naoki Matsumoto

Sign in / Sign up

Export Citation Format

Share Document