Adoption of artificial intelligence in precision matching of donor sperm during assisted reproduction process (Preprint)

2021 ◽  
Author(s):  
Wang Qiling

UNSTRUCTURED An artificial intelligence (AI) based sperm donor humanized matching system was launched to meet infertile patients' requirements on personalized physical appearance of the expected sperm donor such as blood type, origin, ethnicity, height, weight, body build, skin color, hair, face shape, nose bridge, eyelids, iris color, lips, etc. Relying on high-speed 5G networks, the AI matching information in an encoded pattern is fed back to patients in real time and ranked according to similarity. To date, the highest similarity is up to 96%. This system can provide high efficiency and accuracy and avoid the drawbacks of previous manual operations which were tedious, slow and error-prone. In addition, the system helps patients carrying genetic mutations (including thalassemia, spinal muscular atrophy) avoid off-springs’ genetic diseases by matching donors who are qualified by further genetic testing. This system sets a good example of the smart medical market which can also play an important role in addressing patients' personalized medical requirements in addition to aiding in the diagnosis and treatment of diseases.

2021 ◽  
Author(s):  
Wang Qiling ◽  
huang weibiao

UNSTRUCTURED An artificial intelligence (AI) based sperm donor humanized matching system was launched to meet infertile patients' requirements on personalized physical appearance of the expected sperm donor such as blood type, origin, ethnicity, height, weight, body build, skin color, hair, face shape, nose bridge, eyelids, iris color, lips, etc. Relying on high-speed 5G networks, the AI matching information in an encoded pattern is fed back to patients in real time and ranked according to similarity. To date, the highest similarity is up to 96%. This system can provide high efficiency and accuracy and avoid the drawbacks of previous manual operations which were tedious, slow and error-prone. In addition, the system helps patients carrying genetic mutations (including thalassemia, spinal muscular atrophy) avoid off-springs’ genetic diseases by matching donors who are qualified by further genetic testing. This system sets a good example of the smart medical market which can also play an important role in addressing patients' personalized medical requirements in addition to aiding in the diagnosis and treatment of diseases.


2019 ◽  
Vol 9 (2) ◽  
pp. 138-143
Author(s):  
Tianyun Li ◽  
Xiling Dai ◽  
Yichen Li ◽  
Guozheng Huang ◽  
Jianguo Cao

Background:Stenoloma chusanum (L.) Ching is a Chinese traditional medicinal fern with high total flavonoid and total phenolic content. Traditionally, phenolic compounds were separated by using column chromatography, which is relatively inefficient. </P><P> Objective: This study aims to use an efficient method to separate natural products from S. chusanum by Medium-Pressure Liquid Chromatography (MPLC) and High-Speed Counter-Current Chromatography (HSCCC).Methods:In the present research, firstly, a sample (2.5 g) from the dichloromethane extract of S. chusanum was separated by MPLC. Next, fraction P5 was purified by HSCCC with a two-phase solvent system composed of hexane-ethyl acetate-methanol-water (HEMWat) at a volume ratio of 2:4:1:4 (v/v/v/v). </P><P> Result: Four phenolic acids were obtained and their structures were identified by means of NMR and ESI-mass analysis. They were identified as: 1) protocatechuic acid (34 mg, purity 90.1%), 2) syringic acid (66 mg, purity 99.0%), 3) p-hydroxybenzoic acid (5 mg, purity 91.2%) and 4) vanillic acid (6 mg, purity 99.3%).Conclusion:The combination of MPLC and HSCCC is a high-efficiency separation method for natural products. This is the first report with regard to the separation of four phenolic acids in one step by MPLC and HSCCC from S. chusanum (L.) Ching.


Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3357-3365 ◽  
Author(s):  
Shaohua Dong ◽  
Qing Zhang ◽  
Guangtao Cao ◽  
Jincheng Ni ◽  
Ting Shi ◽  
...  

AbstractPlasmons, as emerging optical diffraction-unlimited information carriers, promise the high-capacity, high-speed, and integrated photonic chips. The on-chip precise manipulations of plasmon in an arbitrary platform, whether two-dimensional (2D) or one-dimensional (1D), appears demanding but non-trivial. Here, we proposed a meta-wall, consisting of specifically designed meta-atoms, that allows the high-efficiency transformation of propagating plasmon polaritons from 2D platforms to 1D plasmonic waveguides, forming the trans-dimensional plasmonic routers. The mechanism to compensate the momentum transformation in the router can be traced via a local dynamic phase gradient of the meta-atom and reciprocal lattice vector. To demonstrate such a scheme, a directional router based on phase-gradient meta-wall is designed to couple 2D SPP to a 1D plasmonic waveguide, while a unidirectional router based on grating metawall is designed to route 2D SPP to the arbitrarily desired direction along the 1D plasmonic waveguide by changing the incident angle of 2D SPP. The on-chip routers of trans-dimensional SPP demonstrated here provide a flexible tool to manipulate propagation of surface plasmon polaritons (SPPs) and may pave the way for designing integrated plasmonic network and devices.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 312
Author(s):  
Naruki Hagiwara ◽  
Shoma Sekizaki ◽  
Yuji Kuwahara ◽  
Tetsuya Asai ◽  
Megumi Akai-Kasaya

Networks in the human brain are extremely complex and sophisticated. The abstract model of the human brain has been used in software development, specifically in artificial intelligence. Despite the remarkable outcomes achieved using artificial intelligence, the approach consumes a huge amount of computational resources. A possible solution to this issue is the development of processing circuits that physically resemble an artificial brain, which can offer low-energy loss and high-speed processing. This study demonstrated the synaptic functions of conductive polymer wires linking arbitrary electrodes in solution. By controlling the conductance of the wires, synaptic functions such as long-term potentiation and short-term plasticity were achieved, which are similar to the manner in which a synapse changes the strength of its connections. This novel organic artificial synapse can be used to construct information-processing circuits by wiring from scratch and learning efficiently in response to external stimuli.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4407
Author(s):  
Mbika Muteba

There is a necessity to design a three-phase squirrel cage induction motor (SCIM) for high-speed applications with a larger air gap length in order to limit the distortion of air gap flux density, the thermal expansion of stator and rotor teeth, centrifugal forces, and the magnetic pull. To that effect, a larger air gap length lowers the power factor, efficiency, and torque density of a three-phase SCIM. This should inform motor design engineers to take special care during the design process of a three-phase SCIM by selecting an air gap length that will provide optimal performance. This paper presents an approach that would assist with the selection of an optimal air gap length (OAL) and optimal capacitive auxiliary stator winding (OCASW) configuration for a high torque per ampere (TPA) three-phase SCIM. A genetic algorithm (GA) assisted by finite element analysis (FEA) is used in the design process to determine the OAL and OCASW required to obtain a high torque per ampere without compromising the merit of achieving an excellent power factor and high efficiency for a three-phase SCIM. The performance of the optimized three-phase SCIM is compared to unoptimized machines. The results obtained from FEA are validated through experimental measurements. Owing to the penalty functions related to the value of objective and constraint functions introduced in the genetic algorithm model, both the FEA and experimental results provide evidence that an enhanced torque per ampere three-phase SCIM can be realized for a large OAL and OCASW with high efficiency and an excellent power factor in different working conditions.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1365
Author(s):  
Tao Zheng ◽  
Zhizhao Duan ◽  
Jin Wang ◽  
Guodong Lu ◽  
Shengjie Li ◽  
...  

Semantic segmentation of room maps is an essential issue in mobile robots’ execution of tasks. In this work, a new approach to obtain the semantic labels of 2D lidar room maps by combining distance transform watershed-based pre-segmentation and a skillfully designed neural network lidar information sampling classification is proposed. In order to label the room maps with high efficiency, high precision and high speed, we have designed a low-power and high-performance method, which can be deployed on low computing power Raspberry Pi devices. In the training stage, a lidar is simulated to collect the lidar detection line maps of each point in the manually labelled map, and then we use these line maps and the corresponding labels to train the designed neural network. In the testing stage, the new map is first pre-segmented into simple cells with the distance transformation watershed method, then we classify the lidar detection line maps with the trained neural network. The optimized areas of sparse sampling points are proposed by using the result of distance transform generated in the pre-segmentation process to prevent the sampling points selected in the boundary regions from influencing the results of semantic labeling. A prototype mobile robot was developed to verify the proposed method, the feasibility, validity, robustness and high efficiency were verified by a series of tests. The proposed method achieved higher scores in its recall, precision. Specifically, the mean recall is 0.965, and mean precision is 0.943.


2001 ◽  
Vol 13 (12) ◽  
pp. 1349-1351 ◽  
Author(s):  
M. Gokkavas ◽  
O. Dosunmu ◽  
M.S. Unlu ◽  
G. Ulu ◽  
R.P. Mirin ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Burhan Khurshid ◽  
Roohie Naaz Mir

Generalized parallel counters (GPCs) are used in constructing high speed compressor trees. Prior work has focused on utilizing the fast carry chain and mapping the logic onto Look-Up Tables (LUTs). This mapping is not optimal in the sense that the LUT fabric is not fully utilized. This results in low efficiency GPCs. In this work, we present a heuristic that efficiently maps the GPC logic onto the LUT fabric. We have used our heuristic on various GPCs and have achieved an improvement in efficiency ranging from 33% to 100% in most of the cases. Experimental results using Xilinx 5th-, 6th-, and 7th-generation FPGAs and Stratix IV and V devices from Altera show a considerable reduction in resources utilization and dynamic power dissipation, for almost the same critical path delay. We have also implemented GPC-based FIR filters on 7th-generation Xilinx FPGAs using our proposed heuristic and compared their performance against conventional implementations. Implementations based on our heuristic show improved performance. Comparisons are also made against filters based on integrated DSP blocks and inherent IP cores from Xilinx. The results show that the proposed heuristic provides performance that is comparable to the structures based on these specialized resources.


Sign in / Sign up

Export Citation Format

Share Document