scholarly journals EMULSOMES FOR LIPOPHILIC ANTICANCER DRUG DELIVERY: DEVELOPMENT, OPTIMIZATION AND IN VITRO DRUG RELEASE KINETIC STUDY

Author(s):  
S. DUBEY ◽  
S. P. VYAS

Objective: The objective of the present study was to formulate and characterize paclitaxel (Ptx) loaded sterically stabilized emulsomes to provide non-toxic and biocompatible carriers with high Ptx loading efficiency. Methods: Plain (P-Es) and sterically stabilized emulsomes (SS-Es) were prepared by a modified solvent evaporation method using tristearin as solid lipid and optimized for lipid to (DSPC+CHOL+DSPE-PEG)/ tristearin ratio, lipid/lipid-PEG (DSPC+CHOL/DSPE-PEG) molar ratio, solid lipid concentration, phospholipid concentration, organic to aqueous phase volume and homogenization time based on their effect particle size and entrapment efficiency. Optimized emulsomes were characterized for morphological features, in vitro drug release kinetics and protection from plasma protein. Results: The emulsomes so formed were uniform in size with a mean particle diameter of 275±5.52 and 195±6.4 nm for P-Es and SS-Es respectively. All the formulations showed pH dependent drug release with a slow and sustained release profile. Slower drug release was observed from sterically stabilized emulsomes than the plain emulsomes. The drug release profile followed the Higuchi model with the Fickian diffusion pattern. The Pegylation of emulsomes significantly reduced the in vitro protein absorption. Conclusion: The sterically stabilized emulsome can serve as a novel non-toxic platform with longer circulatory time for the delivery of Paclitaxel and other poorly water-soluble drugs as well.

Author(s):  
Anjali P.B ◽  
Jawahar N. ◽  
Jubie S. ◽  
Neetu Yadav ◽  
Selvaraj A. ◽  
...  

Background: : Epilepsy is a genuine neurological turmoil that effects around 50 million individuals around the world. Practically 30% of epileptic patients experience the ill effects of pharmaco-obstruction, which is related with social seclusion, subordinate conduct, low marriage rates, joblessness, mental issues and diminished personal satisfaction. At present accessible antiepileptic drugs have a restricted viability, and their negative properties limit their utilization and cause challenges in patient administration. Gabapentin 1-(aminomethyl)cyclohexane acetic acid, Gbp , (trade name Neurontin), a structural analog of γ-aminobutyric acid (GABA), BCS class 3 drug with having permeability issues. Objective: This work was an attempt to formulate and characterize a new approach to treat epilepsy by targeting to Phospholipase A2 Enzyme through Nanostructured Lipid Carrier. Methods: Docking studied carried out using Accelrys Discovery studio 4.1 Client and gabapentin and phosphotidylcholine were conjugated through chemical conjugation. Nanostructured lipid carrier (NLC) was prepared using hot homogenization technique. Results: The libdock score of Gabapentin- Phosphotidylcholine conjugate (192.535) were found to be more than Gabapentin (77.1084) and Phosphotidylcholine (150.212). For the optimized formulation the particle size (50.08), zeta potential (-1.48), PDI (0.472) and entrapment efficiency (77.8) was observed. The NLC was studies for in-vitro drug release studies and release kinetics. Finally found that the drug release from the NLC followed Higuchi release kinetic and the mode of drug release from the NLC was found to be Non- Fickian diffusion. Conclusion: The formulated Nanostructured lipid carrier of Gabapentin-Phosphotidylcholine conjugate may be able to use to prevent seizure.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (02) ◽  
pp. 27-35
Author(s):  
A. A Bakliwal ◽  
◽  
D. S. Jat ◽  
S. G. Talele ◽  
A. G. Jadhav

The objective of the present study was to produce extended release nateglinide nanosponges for oral delivery. Preparation of nanosponges leads to solubility enhancement. Nateglinide is a BCS Class II drug, having low solubility. So, to increase the solubility of nateglinide it is formulated into nanosponges. Nanosponges using ethyl cellulose as a polymer and dichloromethane as a cross-linker were prepared successfully by ultra-sound assisted synthesis method. The effects of different drug: placebo ratios on the physical characteristics of the nanosponges as well as the drug content and in vitro drug release of the nanosponges were investigated. Particle size analysis and surface morphology of nanosponges were performed. The scanning and transmission electron microscopy of nanosponges showed that they were spongy in nature. The particle size was found to be in the range 46.37 - 97.23 nm out of which particle size of the optimized formulation was 51.79 nm and the drug content was found to 79.43 %. The optimized nanosponge formulations were selected for preparing nanosponge tablets for extended drug delivery by oral route. These tablets were prepared using xanthan gum and PVP K-30 and were evaluated by pre-compression and post-compression parameters. The nateglinide nanosponges tablet formulation were studied for different parameters using Design Expert Software. All formulations were evaluated for in vitro drug release analyzed according to various release kinetic models and it was found that it follows zero order release kinetics.


Author(s):  
Ritesh Kumar ◽  
Kashmira J. Gohil

Objective: The aim of the present study was to increase the absolute bioavailability of famotidine, enhanced patient compliance in the treatment of peptic ulcer by increasing its gastric residence time and controlled local release of drug upto 12 hours. Materials and Methods: Hydrodynamically balanced capsules of famotidine were prepared, consisting of floating matrix granules, which formed hydrogels. Effects of different formulation variables namely hypromellose (HPMC 4000 cps, HPMC 5600 cps, HPMC 15000 cps), effervescent agent (potassium bicarbonate) and mixing time were studied. Optimization study included 23 full factorial design with t50% and t80% as the kinetic parameters (response variable). Matrix characterization included scanning electron microscopy. All prepared formulations were evaluated to various parameters such as micromeritics properties, % buoyancy and in vitro drug release studies. Results and Discussion: The optimized formulation (F4) remains buoyant for more than 12 hrs. The in-vitro drug release study indicated that increasing the viscosity of HPMC resulted in sustained drug release with long floating duration. SEM studies showed definite entrapment of the drug in the matrix and hydrogel formation. Results showed a pH independent but polymer viscosity dependent drug release profile. The release kinetics followed Higuchi model and mechanism of release was found to be non-Fickian diffusion. Conclusion: Famotidine-loaded hydrodynamically balanced capsules were successfully prepared and prove to be useful for prolonged gastric residence of the drug, better bioavailability, patient compliance and improve delivery for enhanced anti-ulcer activity.


Author(s):  
Kranthi Kumar Kotta ◽  
L. Srinivas

The present investigation focuses on the development of mucoadhesive tablets of captopril which are designed to prolong the gastric residence time after oral administration. Matrix tablets of captopril were formulated using four mucoadhesive polymers namely guar gum, xanthan gum, HPMC K4M and HPMC K15M and studied for parameters such as weight variation, thickness, hardness, content uniformity, swelling index, mucoadhesive force and in vitro drug release. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M provide slow release of captopril over period of 12 hr and were found suitable for maintenance portion of oral controlled release tablets. The cumulative % of drug release of formulation F9 and F10 were 90 and 92, respectively. In vitro release from these tablets was diffusion controlled and followed zero order kinetics. The ‘n’ values obtained from the pappas-karsemeyer equation suggested that all the formulation showed drug release by non-fickian diffusion mechanism. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M (1:1) were established to be the optimum formulation with optimum bioadhesive force, swelling index & desired invitro drug release. This product was further subjected to stability study, the results of which indicated no significant change with respect to Adhesive strength and in vitro drug release study.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1130
Author(s):  
Mariana Pires Figueiredo ◽  
Ana Borrego-Sánchez ◽  
Fátima García-Villén ◽  
Dalila Miele ◽  
Silvia Rossi ◽  
...  

This work presents the development of multifunctional therapeutic membranes based on a high-performance block copolymer scaffold formed by polyether (PE) and polyamide (PA) units (known as PEBA) and layered double hydroxide (LDH) biomaterials, with the aim to study their uses as wound dressings. Two LDH layer compositions were employed containing Mg2+ or Zn2+, Fe3+ and Al3+ cations, intercalated with chloride anions, abbreviated as Mg-Cl or Zn-Cl, or intercalated with naproxenate (NAP) anions, abbreviated as Mg-NAP or Zn-NAP. Membranes were structurally and physically characterized, and the in vitro drug release kinetics and cytotoxicity assessed. PEBA-loading NaNAP salt particles were also prepared for comparison. Intercalated NAP anions improved LDH–polymer interaction, resulting in membranes with greater mechanical performance compared to the polymer only or to the membranes containing the Cl-LDHs. Drug release (in saline solution) was sustained for at least 8 h for all samples and release kinetics could be modulated: a slower, an intermediate and a faster NAP release were observed from membranes containing Zn-NAP, NaNAP and Mg-NAP particles, respectively. In general, cell viability was higher in the presence of Mg-LDH and the membranes presented improved performance in comparison with the powdered samples. PEBA containing Mg-NAP sample stood out among all membranes in all the evaluated aspects, thus being considered a great candidate for application as multifunctional therapeutic dressings.


Author(s):  
Nani Tadhi ◽  
Himansu Chopra ◽  
Gyanendra Kumar Sharma

Transdermal patch is a drug delivery device in which the drugs are incorporated and is design in such a way that it releases the drug in sustained and at predetermined rate to deliver the drug through the skin to the systemic circulation painlessly. The aim of this research study was to formulate a controlled and sustained release transdermal matrix type patch of Methimazole. The matrix patch was prepared by solvent casting method using a various polymer in different concentration, HPMC (hydrophilic), Eudragit RL100 and Ethyl cellulose (hydrophobic) polymer. Total 9 prototype formulation were prepared and it was subjected for various evaluation test; weight uniformity, Folding endurance, thickness, Drug content, percent moisture content, percent Moisture uptake and In-vitro drug release study using Franz diffusion cell. The in-vitro CDR% data was fit into kinetics model to see the release kinetics from the patches. The Formulation F5 was choosen as a best formulation according to in-vitro drug release study. The in-vitro release was found 81.12 % in 12 hours, it followed zero order kinetics. The nature of polymer and concentration ratio of polymers plays a crucial role for obtaining a good transdermal patch design; therefore optimisation is very important step to formulate a desired TDDS. Therefore the result of the study encourages a further study and is hopeful that the present study would contribute to the recent pharmaceutical research for formulation development.


2021 ◽  
Vol 7 (1) ◽  
pp. 35-38
Author(s):  
Sudipta Das ◽  
Arnab Samanta ◽  
Koushik Bankura ◽  
Debatri Roy ◽  
Amit Nayak

The present work is focused on the preparation and in vitro release kinetics of liposomal formulation of Leuprolide Acetate. In this work, “Thin Lipid Film Hydration Method” was used for preparation of Leuprolide Acetate loaded liposomes. Prepared liposomal formulations of Leuprolide acetate was evaluated by drug entrapment study, in-vitro drug release kinetics and stability studies. The percentage drug entrapment of Leuprolide acetate for F1 and F2 formulations were found to be 78.14 ± 0.67 and 66.70 ± 0.81% respectively. In-vitro drug release study of liposomal formulations had shown zero order release pattern. Regression co-efficient (R2) value of Zero order kinetics for F1 and F2 formulations were 0.9912 and 0.9676 respectively. After storing formulations for 1 month, stability testing was done at 40C.It was found that all batches were stable. These liposomal formulations of Leuprolide acetate can be formulated for parenteral application to treat prostate cancer and in women, to treat symptoms of endometriosis (overgrowth of uterine lining outside of the uterus) or uterine fibroids.


Author(s):  
Preethi G. B. ◽  
Prashanth Kunal

<p><strong>Objective: </strong>The current work was attempted to formulate and evaluate a controlled-release matrix-type ocular inserts containing a combination of brimonidine tartrate and timolol maleate, with a view to sustain the drug release in the cul-de-sac of the eye.<strong></strong></p><p><strong>Methods: </strong>Initially, the infrared studies were done to determine the drug–polymer interactions. Sodium alginate-loaded ocuserts were prepared by solvent casting technique. Varying the concentrations of polymer—sodium alginate, plasticizer—glycerine, and cross-linking agent—calcium chloride by keeping the drug concentration constant, made a total of nine formulations. These formulations were evaluated for its appearance, drug content, weight uniformity, thickness uniformity, percentage moisture loss, percentage moisture absorption, and <em>in vitro </em>release profile of the ocuserts. Finally, accelerated stability studies and the release kinetics were performed on the optimised formulation.<strong></strong></p><p><strong>Results: </strong>It was perceived that polymer, plasticizer, and calcium chloride had a significant influence on the drug release. The data obtained from the formulations showed that formulation—F9 was the optimised formulation, which exhibited better drug release. The release data of the optimised formulation tested on the kinetic models revealed that it exhibited first-order release kinetics. <strong></strong></p><p><strong>Conclusion: </strong>It can be concluded that a natural bioadhesive hydrophilic polymer such as sodium alginate can be used as a film former to load water soluble and hydrophilic drugs like brimonidine tartrate and timolol maleate. Among all formulations, F9 with 400 mg sodium alginate, 2% calcium chloride and 60 mg glycerin were found to be the most suitable insert in terms of appearance, ease of handling, thickness, <em>in vitro</em> drug release and stability.</p>


Sign in / Sign up

Export Citation Format

Share Document