scholarly journals DEVELOPMENT AND CHARACTERIZATION OF ORO-DISPERSIBLE TABLETS OF METFORMIN HYDROCHLORIDE USING CAJANUS CAJAN STARCH AS A NATURAL SUPERDISINTEGRANT

Author(s):  
SONIA DHIMAN ◽  
RITCHU BABBAR ◽  
THAKUR GURJEET SINGH ◽  
SHIVANGI ANAND ◽  
ASHI MANNAN ◽  
...  

Objective: The aim of the research work was to explore the use of Cajanus cajan (Pigeon pea) polysaccharide as a superdisintegrant. The novel superdisintegrant has been evaluated for its action by incorporating it into orodispersible tablets of Metformin Hydrochloride. Methods: Cajanus cajan starch was extracted from its seeds and superdisintegrant was developed by microwave modification of the extract. Various characterization tests such as gelatinization temperature, water absorption index, pH, and viscosity were used to identify the microwave-modified polysaccharide. The orodispersible tablets were made using a direct compression process employing varying concentrations of modified Cajanus cajan starch. Prepared tablets were tested for several pre and post-compression parameters and compared with a well-established synthetic superdisintegrant, sodium starch glycolate. The stability studies were conducted on an optimized formulation. Results: Fourier transform infrared spectroscopy study showed that the drug had no interactions with the microwave-modified Cajanus cajan starch. SEM confirmed that Cajanus cajan starch granules exhibited intact granular structure in oval shapes and smooth surfaces. After microwave modification, the Cajanus cajan starch component lost its granular structure, which further led to the generation of surface pores and internal channels, causing overall swelling responsible for superdisintegrant activity. The optimized formulation (ODF5) containing 15 % modified Cajanus cajan starch performed better in terms of wetting time (22.21 s), disintegration time (53.3 s), and in vitro drug release (92%), as compared to formulation prepared by synthetic superdisintegrant (ODF1). Conclusion: The present investigation concluded that modified Cajanus cajan starch has good potential as a superdisintegrant for formulating oro-dispersible tablets. Furthermore, modified Cajanus cajan starch is inexpensive, non-toxic and compatible in comparison with available synthetic superdisintegrants.

Author(s):  
SATYAJITH PANDA ◽  
NODAGALA HEMALATHA ◽  
PANCHAGNULA UDAYA SHANKAR ◽  
SRINIVASA RAO BARATAM

Objective: In this study, a polysaccharide isolated from the seeds of Cajanus cajan (pigeon pea) was investigated as a super disintegrant in the orodispersible tablets of diclofenac sodium. Methods: Diclofenac sodium tablets were prepared separately using different concentrations (5%, 7.5%, 10%, and 15% w/w) of isolated Cajanus cajan seed polysaccharide (natural) and sodium starch glycolate (synthetic) as super disintegrant by the direct compression method. Evaluation of tablets was done for various pre-and post-compression parameters. The stability studies were performed on optimized formulation F5. The disintegration time and in vitro drug release of the formulation F5 was compared with pregelatinized starch and synthetic super disintegrant (sodium starch glycolate). Results: The drug-excipient interactions were characterized by Fourier transform infrared studies. The Optimized formulation F5 containing 15% polysaccharide showed wetting time of 118.7 seconds with 105.3 seconds of disintegration time and 95.61% dissolved in 3 min. Conclusion: The present work revealed that Cajanus cajan seed polysaccharide has a good disintegrating agent in the formulation of orodispersible tablets.


2021 ◽  
Vol 11 (1) ◽  
pp. 42-47
Author(s):  
Pooja Kanathe ◽  
Ruchi Jain ◽  
Nilesh Jain ◽  
Surendra Kumar Jain

The purpose of this research work is to formulate and evaluate the Orodispersible tablet of Fluvastatin Sodium to enhance the bioavailability and effectiveness of the drug. The objectives of the drug work were to formulate and evaluate Orodispersible tablets of Fluvastatin Sodium, having adequate mechanical strength, rapid disintegration, and fast action. Precompression parameters like angle of repose, bulk density, tapped density, compressibility index & post-compression parameters like wetting time, water absorption ratio, in-vitro disintegration, and in-vitro dispersion time were studied. The hardness, friability, and drug content of all the formulations were found to be within the limits. The best formulation PK09 has shown good disintegration time, dissolution time, and dispersion time. The optimized formulation of batch PK9 gave the best in-vitro release of 99.60% in 3min in phosphate buffer pH 6.8. The release of the drug followed the matrix diffusion mechanism as compared to the commercial formulation. Formulation PK9 gives quick disintegration and better drug release. Hence it can be concluded that the formulation of PK9 is stable and effective for quick action and it is an alternative to the conventional tablets. Keywords:  Orodispersible Tablets, Fluvastatin Sodium, Fast dissolving/disintegrating tablets, GIT, bioavailability, first-pass metabolism, superdisintegrants


Author(s):  
Sarika S. Malode ◽  
Milind P. Wagh

The objective of present work was to develop taste masked orodispersible tablets of mirabegron. Mirabegron is beta 3 adrenoceptor agonist used to treat overactive bladder. Overactive bladder (OAB) is defined as a symptom syndrome showing feeling of urgency to urinate, typically accompanied by frequent daytime and nocturnal urination, in the absence of proven infection or other obvious pathology. Over active bladders are generally common in geriatrics. Moreover, this drug has a very strong bitter taste. Frequent dosing requires frequent water intake, which further aggregates the condition of over active bladder and bitter taste of drug affects patient compliance. Hence a need arises to mask the bitter taste for development of an ODT which does not require consuming water with every dosage. In this work, the bitter taste of mirabegron was masked by forming a complex with an ion exchange resin tulsion 344. The drug resin complexation process was optimized for resin activation, drug: resin ratio, soaking time and stirring time. In –vitro release studies revealed complete drug elution from the complex within 10 minutes in pH 1.2 buffer. The taste-masked complex was then formulated into palatable orodispersible tablets using a direct compression approach by use of superdisintegrants to achieve a rapid disintegration. The tablets were evaluated for weight variation, hardness, friability, drug content, wetting time, In- vivo disintegration time and in-vitro dissolution time.


Author(s):  
Hemant A. Deokule ◽  
Smita S. Pimple ◽  
Praveen D. Chaudhari ◽  
Ajit S. Kulkarni

Fast dissolving strips are used as novel approaches, as it dissolves rapidly in mouth and directly reaches the systemic circulation. In present research work, an attempt has been made to prepare mouth dissolving strips of Metoclopramide hydrochloride by using a novel film former Pullulan by solvent casting method. A33 full factorial design was utilized for the optimization of the effect of independent variables such as the amount of Pullulan, amount of PEF 400, amount of SSG on mechanical properties, and % drug release of strips. The drug compatibility studies using FTIR and DSC studies formulated strips were characterized for their physicochemical parameter like weight variation, visual appearance, folding endurance, thickness, disintegration time, drug content, and in vitro dissolution studies. FTIR and DSC studies revealed that the polymer is compatible with the drug. It was found that the optimum levels of the responses for a fast release strip could be obtained at low levels of Pullulan, PEG400, and SSG. The prepared strip was clear transparent and had a smooth surface. The surface pH was found 4.8 to 5.2 be in the range of to which is close to salivary pH, which indicates that strips may have less potential to irritate the oral mucosa, thereby they are comfortable. The drug release was found to be between 90.94 to 100.5% in 2 min. The in-vitro disintegration time of strips prepared with Pullulan was in the range of 19 to 57 sec. As the concentration of SSG increases the decrease in the disintegration time of strips a decrease. The dissolution rate increased with an increase in the concentration of SSG. Hence, it can be inferred that the fast dissolving oral strips of Metoclopramide hydrochloride may produce rapid action thereby improving bioavailability and enhance the absorption by avoiding the first-pass effect.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (10) ◽  
pp. 39-46
Author(s):  
V Prakash ◽  
◽  
L. Keshri ◽  
V. Sharma ◽  
K. Pathak

The aim of the present study was to mask the bitter taste of oxybutynin chloride by lipid excipients and to develop its fast disintegrating tablet. For this purpose, a blend of two lipids, glyceryl behenate and glyceryl palmitostearate was utilized for taste masking by solvent evaporation method. The evaporation of solvent was accomplished by freeze drying and taste masked granules were characterized for their micromeritic and rheological properties. The state of dispersion was analyzed by SEM and DSC. Orodispersible tablets were then formulated (F1- F6) using Polyplasdone XL as extragranular superdisintegrant and evaluated for hardness, disintegration time, in vitro dissolution time and in vivo disintegration time. Results indicated that the formulation F6 exhibited minimum in vivo disintegration time of 8 sec with effective taste masking. In vitro release analysis indicated %DE10 and %DE25 of 51.48 and 76.53 respectively. Conclusively, taste masked orodispersible formulation of oxybutynin chloride was developed that could be beneficial for geriatric population.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 598 ◽  
Author(s):  
Alhussain H. Aodah ◽  
Mohamed H. Fayed ◽  
Ahmed Alalaiwe ◽  
Bader B. Alsulays ◽  
Mohammed F. Aldawsari ◽  
...  

Compression of cohesive, poorly compactable, and high-dose metformin hydrochloride into the orally disintegrating tablet (ODT) is challenging. The objective of this study was to develop metformin ODT using the moisture activated dry granulation (MADG) process. There are no reports in the literature regarding the development of ODT based on MADG technology. The feasibility of developing metformin ODT was assessed utilizing a 32 full factorial design to elucidate the influence of water amount (X1) and the amount of pregelatinized starch (PGS; X2) as independent variables on key granules and tablets’ characteristics. The prepared granules and tablets were characterized for granule size, bulk density, flow properties, tablets’ weight variation, breaking force, friability, capping tendency, in vitro and in vivo disintegration, and drug release. Regression analysis showed that X1 and X2 had a significant (p ≤ 0.05) impact on key granules and tablets’ properties with a predominant effect of the water amount. Otherwise, the amount of PGS had a pronounced effect on tablet disintegration. Optimized ODT was found to show better mechanical strength, low friability, and short disintegration time in the oral cavity. Finally, this technique is expected to provide better ODT for many kinds of high-dose drugs that can improve the quality of life of patients.


Author(s):  
Dattatraya M. Shinkar ◽  
Pooja S. Aher ◽  
Parag D. Kothawade ◽  
Avish D. Maru

Objective: The main objective of this research work was to formulate and evaluate fast dissolving tablet of verapamil hydrochloride for the treatment of hypertension.Methods: In this study, fast dissolving tablet were prepared by wet granulation method by using croscarmellose sodium and sodium starch glycolate as superdisintegrants in the concentration of 2%, 4%, and 6%. Polyvinyl pyrollidone K30 is used as a binder. The designed tablets were subjected to various assessment parameters like friability test, hardness test, disintegration test, wetting time, in vitro drug release and drug content.Results: All the prepared formulations were subjected to various assessment parameters, and the findings obtain within the prescribed limit. The calibration curve of pure drug using various solvents like distilled water, phosphate buffer pH 6.8 was plotted. F1-F9 containing croscarmellose sodium and sodium starch glycolate in various concentration demonstrate the minimum disintegration time. Among all these formulations F8 shows disintegration time upto 19±0.06 seconds due to the high concentration of superdisintegrants. In vitro drug release was tested in phosphate buffer pH 6.8 at a time interval of 0, 1, 3,6,9,12,15 min. The F8 shows drug release 98.5±0.567%. Accelerated stability study of optimized formulation (F8) up to 2 mo showed there was no change in disintegration time and percentage drug release.Conclusion: The results obtained in the research work clearly showed a promising potential of fast dissolving tablets containing a specific ratio of crosscarmellose sodium and sodium starch glycolate as superdisintegrants for the effective treatment of hypertension. 


2019 ◽  
Vol 9 (1-s) ◽  
pp. 229-239
Author(s):  
J Nandhini ◽  
AN Rajalakshmi

The objective of this study was to enhance the solubility of Methylprednisolone by choosing micronized form of drug and to enhance patient compliance by formulating it as dispersible tablets using quality by design (QbD) approach. Dispersible tablets of Methylprednisolone were developed by 23 factorial design. In this study independent variables were concentrations of MCC 102, CCS and Magnesium stearate and dependent variables were disintegration time, hardness and dissolution. The resulting data was fitted into Design Expert Software (Trial Version) and analyzed statistically using analysis of variance (ANOVA). The response surface plots were generated to determine the influence of concentration of MCC 102, CCS and magnesium stearate on responses. The tablets were prepared by direct compression method by choosing micronized form of drug and formulations were evaluated for the standard of dispersible tablets. Results showed that no significant drug-polymer interactions in FTIR studies. According to QbD suggestion the formulation O1 (Desirability- 0.73) with MCC-38mg, CCS-3.5mg and magnesium stearate-2.5mg was formulated and evaluated. The disintegration time was found to be 69 seconds, hardness was found to be 64N and in vitro dissolution with in 30minutes. Optimized O1 formulation was within the limits of standards of dispersible tablets with increased water solubility and better patient compliance. Stability study on optimized O1 formulation showed that there is no significant changes during study period. Thus, O1 formulation was found to be stable. The study indicates that formulation of Methylprednisolone dispersible tablets by using QbD approach is a promising formulation development method. Keywords: Dispersible tablets, Methylprednisolone, Direct compression, Quality by Design and ANOVA.


Sign in / Sign up

Export Citation Format

Share Document