scholarly journals LC-MS/MS CHARACTERIZATION OF FORCED DEGRADATION PRODUCTS OF TUCATINIB, A NOVEL TYROSINE KINASE INHIBITOR: DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD

Author(s):  
S. K. REEHANA ◽  
K. SUJANA

Objective: The current study focused on the development, validation, and characterization of forced degradation products using LC-MS/MS. Methods: A simple, selective, validated and well-defined isocratic HPLC methodology for the quantitative determination of Tucatinib at a wavelength of 239 nm. An isocratic elution of samples was performed on an Inertsil ODS (250x4.6 mm, 5m) column with a mobile phase of 70:30v/v Acetonitrile and formic acid (0.1%) delivered at a flow rate of 1.0 ml/min. MS/MS was used to characterize degradation products formed in the forced degradation study. The validation and characterization of forced degradation products were performed in accordance with ICH guidelines. Results: Over the concentration range of 5-100μg/ml, a good linear response was obtained. Tucatinib's LOD and LOQ were determined to be 0.05 and 0.5, respectively. According to standard guidelines, the method was quantitatively evaluated in terms of system suitability, linearity, precision, accuracy, and robustness, and the results were found to be within acceptable limits. The drug was degraded under acidic, alkaline, and reduction conditions in forced degradation studies. Conclusion: The method was found to be applicable for routine tucatinib analysis. Because no LC-MS/MS method for estimating tucatinib and its degradation products has been reported in the literature. There is a need to develop a method for studying the entire tucatinib degradation pathway.

2019 ◽  
Vol 43 (19) ◽  
pp. 7294-7306 ◽  
Author(s):  
G. Shankar ◽  
Roshan M. Borkar ◽  
Suresh Udutha ◽  
M. Kanakaraju ◽  
G. Sai Charan ◽  
...  

Omeprazole (OMP), a prototype proton pump inhibitor used for the treatment of peptic ulcers and gastroesophageal reflux disease (GERD), was subjected to forced degradation studies as per ICH guidelines Q1A (R2).


2020 ◽  
Vol 32 (12) ◽  
pp. 3127-3134

For the simultaneous determination of repaglinide and metformin hydrochloride in bulk, an effective and simple UHPLC method was developed and validated and applied to marketed repaglinide and metformin products. The mobile phase used for chromatographic runs consisted of 30 mM phosphate buffer (pH 3.7) and acetonitrile (20:80, v/v) separation was implemented using isocratic mode on an Agilent Zorbax Eclipse Plus C18 (150 × 4.6 mm, 5 μm) column. Drug peaks were well separated and a 232 nm DAD detector observed them. The method was linear for repaglinide and metformin at the concentration range of 20-100 μg/mL, respectively. The method has been validated with respect to system suitability, specificity, accuracy, precision, robustness and ruggedness according to ICH guidelines. Repaglinide and metformin forced degradation studies were conducted for under acidic, base, neutral (peroxide), thermal and photo conditions.


2020 ◽  
Vol 16 (8) ◽  
pp. 1130-1139
Author(s):  
Singaram Sathiyanarayanan ◽  
Chidambaram Subramanian Venkatesan ◽  
Senthamaraikannan Kabilan

Background: Regadenoson is an A2A adenosine receptor agonist that is a coronary vasodilator and commonly used as a pharmacologic cardiac stressing agents. Methods: HPLC method was used for the analysis of related substances. The degraded impurities during the process were isolated and characterized by IR, Mass and NMR spectral analysis. Results: Forced degradation study of regadenoson under conditions of hydrolysis (neutral, acidic and alkaline) and oxidations suggested in the ICH Q1A(R2) was accomplished. The drug showed significant degradation under all the above conditions. On the whole, five novel degradation products were found under diverse conditions along with process related impurities which were not reported earlier. Conclusion: All the degradation products were well characterized by using advanced spectroscopic techniques like IR, 1H NMR, 13C NMR and Mass spectra. The identification of these impurities will be productive for the quality control during the production and stability behavior of the regadenoson drug substance.


2021 ◽  
Author(s):  
Abderrazaq Hamdache ◽  
Lamia Grib ◽  
Celia Grib ◽  
Lydia Adour ◽  
Hakim Zatout ◽  
...  

2011 ◽  
Vol 8 (s1) ◽  
pp. S119-S126
Author(s):  
S. Venugopal ◽  
U. M. Tripathi ◽  
N. Devanna

This paper describes the development of reverse phase HPLC method for etoricoxib in the presence of impurities and degradation products generated from the forced degradation studies. The drug substance was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. The degradation of etoricoxib was observed under base and oxidation environment. The drug was found stable in other stress conditions studied. Successful separation of the drug from the process related impurities and degradation products were achieved on zorbax SB CN (250 x 4.6 mm) 5 μm particle size column using reverse phase HPLC method. The isocratic method employed with a mixture of buffer and acetonitrile in a ratio of 60:40 respectively. Disodium hydrogen orthophosphate (0.02 M) is used as buffer and pH adjusted to 7.20 with 1 N sodium hydroxide solution. The HPLC method was developed and validated with respect to linearity, accuracy, precision, specificity and ruggedness.


2015 ◽  
Vol 7 (18) ◽  
pp. 7659-7673 ◽  
Author(s):  
A. Abiramasundari ◽  
V. Sudarsanam ◽  
Kamala K. Vasu

A systematic forced degradation study of bambuterol was carried out according to ICH guidelines. Twelve degradation products of bambuterol were identified and characterized. Plausible mechanisms of formation of the degradation products are discussed.


2021 ◽  
Vol 104 (4) ◽  
pp. 57-68
Author(s):  
V.G. Kamani ◽  
◽  
M. Sujatha ◽  
G.B. Daddala ◽  
◽  
...  

This study reports for the first time about a stability indicating RP-HPLC method for analysis of darolutamide and its impurities 1, 2, and 3 in bulk and formulations. The separation was achieved on Phenomenex column with Luna C18 (250 mm × 4.6 mm, 5 μm) as stationary phase, and 50 mM ammonium acetate: methanol solution 15:80 (v/v) at pH 5.2 as mobile phase at 1.0 mL/min flow rate. UV detection was carried at wavelength of 239 nm. In these conditions the retention time of darolutamide and its impurities 1, 2, and 3 was 7.05, 8.90, 4.63 and 5.95 min, respectively. The method was validated for system suitability, range of analysis, precision, specificity, stability, and robustness. Forced degradation study was done through exposure of the analyte to five different stress conditions and the % degradation was small in all degradation condition. The proposed method can separate and estimate the drug and its impurities in pharmaceutical formulations. Hence, the developed method was suitable for the quantification of darolutamide and can separate and analyse impurities 1, 2, and 3


Sign in / Sign up

Export Citation Format

Share Document