Dysregulated expression of miRNAs in immune thrombocytopenia

Epigenomics ◽  
2021 ◽  
Author(s):  
Abdollah Jafarzadeh ◽  
Havva Marzban ◽  
Maryam Nemati ◽  
Sara Jafarzadeh ◽  
Maryam Mahjoubin-Tehran ◽  
...  

In recent years the critical role of miRNAs has been established in many diseases, including autoimmune disorders. Immune thrombocytopenia purpura (ITP) is a predominant autoimmune disease, in which aberrant expression of miRNAs has been observed, suggesting that miRNAs are involved in its development. miRNAs could induce an imbalance in the T helper (Th)1/Th2 cell and Th17/Treg cell-related responses. Moreover, they could also cause alterations in Th9 and Th22 cell responses, and activate Tfh (T follicular helper) cell-dependent auto-reactive B cells, thus influencing megakaryogenesis. Herein, we summarize the role of immune-related miRNAs in ITP pathogenesis, and look forward to clinical applications.

2015 ◽  
Vol 194 (6) ◽  
pp. 2673-2682 ◽  
Author(s):  
Motoyasu Onishi ◽  
Koji Ozasa ◽  
Kouji Kobiyama ◽  
Keiichi Ohata ◽  
Mitsutaka Kitano ◽  
...  

Author(s):  
Francesca Schena ◽  
Federica Penco ◽  
Stefano Volpi ◽  
Claudia Pastorino ◽  
Roberta Caorsi ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaoyang Zhang ◽  
Cheng Wei ◽  
Hao Liang ◽  
Lei Han

Polo-like kinases (Plks) are critical regulatory molecules during the cell cycle process. This family has five members: Plk1, 2, 3, 4, and 5. Plk4 has been identified as a master regulator of centriole replication, and its aberrant expression is closely associated with cancer development. In this review, we depict the DNA, mRNA, and protein structure of Plk4, and the regulation of Plk4 at a molecular level. Then we list the downstream targets of Plk4 and the hallmarks of cancer associated with these targets. The role of Plk4 in different cancers is also summarized. Finally, we review the inhibitors that target Plk4 in the hope of discovering effective anticancer drugs. From authors’ perspective, Plk4 might represent a valuable tumor biomarker and critical target for cancer diagnosis and therapy.


Viruses ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 154
Author(s):  
Fengling Feng ◽  
Jin Zhao ◽  
Pingchao Li ◽  
Ruiting Li ◽  
Ling Chen ◽  
...  

Antigen-specific T lymphocytes play a critical role in controlling viral infections. However, we report here that preexisting virus-specific T cell responses also contribute to promoting adenovirus (Ad) infection. Previously, we found that CD14+ monocytes from Ad-seropositive individuals exhibited an increased susceptibility to Ad infection, when compared with that of Ad-seronegative individuals. But the underlying mechanisms for this enhancement of viral infection are not completely clarified. In this study, we found that the efficacy of Ad infection into CD14+ monocytes was significantly decreased after CD3+ T lymphocytes depletion from PBMC samples of Ad-seropositive individuals. In contrast, adding virus-specific CD3+ T lymphocytes into PBMC samples of Ad-seronegative individuals resulted in a significant increase of infection efficacy. CD3+ T lymphocytes in PBMC samples from Ad-seropositive individuals were more sensitive to be activated by adenovirus stimulus, characterized by upregulation of multiple cytokines and activation markers and also enhancement of cell proliferation. Further studies demonstrated that GM-CSF and IL-4 can promote Ad infection by up-regulating the expression of scavenger receptor 1 (SR-A) and integrins αVβ5 receptor of CD14+ cells. And taken together, these results suggest a novel role of virus-specific T cells in mediating enhancement of viral infection, and provide insights to understand the pathogenesis and complicated interactions between viruses and host immune cells.


2013 ◽  
Vol 288 (38) ◽  
pp. 27423-27433 ◽  
Author(s):  
Duy Pham ◽  
Crystal C. Walline ◽  
Kristin Hollister ◽  
Alexander L. Dent ◽  
Janice S. Blum ◽  
...  

Cytokine responsiveness is a critical component of the ability of cells to respond to the extracellular milieu. Transcription factor-mediated regulation of cytokine receptor expression is a common mode of altering responses to the external environment. We identify the transcription factor Twist1 as a component of a STAT3-induced feedback loop that controls IL-6 signals by directly repressing Il6ra. Human and mouse T cells lacking Twist1 have an increased ability to differentiate into Th17 cells. Mice with a T cell-specific deletion of Twist1 demonstrate increased Th17 and T follicular helper cell development, early onset experimental autoimmune encephalomyelitis, and increased antigen-specific antibody responses. Thus, Twist1 has a critical role in limiting both cell-mediated and humoral immunity.


2017 ◽  
Vol 199 (8) ◽  
pp. 2624-2629 ◽  
Author(s):  
Ryuta Kamekura ◽  
Kenichi Takano ◽  
Motohisa Yamamoto ◽  
Koji Kawata ◽  
Katsunori Shigehara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document