The association between HLA-B*15:02 and phenytoin-induced severe cutaneous adverse reactions: a meta-analysis

2021 ◽  
Author(s):  
Thanh Huong Phung ◽  
Khanh Ngoc Cong Duong ◽  
Mac Ardy Junio Gloria ◽  
Thien Khac Nguyen

Aim: Phenytoin (PHT) is a common anticonvulsant agent known for inducing severe cutaneous adverse reactions (SCARs). HLA-B*15:02 as a risk factor of PHT-induced SCARs was reported in numerous studies with inconsistent results. This meta-analysis aimed to establish pooling evidence of this association. Materials & methods: Pooled odds ratios (ORs) with 95% CIs were estimated using a random-effects model. Results: A total of 11 studies on 1389 patients, were included for the analyses. There was a significant association between HLA-B*15:02 and PHT-induced SCAR (pooled OR = 2.29, 95% CI: 1.25–4.19, p = 0.008). Furthermore, there was a significant association regarding Stevens–Johnson syndrome/toxic epidermal necrolysis (OR = 3.63, 95% CI: 2.15–6.13, p < 0.001) but no association regarding drug reaction with eosinophilia and systemic symptom. Conclusion: The results supported the recommendations of HLA-B*15:02 screening before treatment with PHT.

2020 ◽  
Author(s):  
Dinh van Nguyen ◽  
Hieu Chi Chu ◽  
Christopher Vidal ◽  
Richard B Fulton ◽  
Nguyet Nhu Nguyen ◽  
...  

Aims: To determine genetic susceptibility markers for carbamazepine (CBZ) and allopurinol-induced severe cutaneous adverse reactions (SCARs) in Vietnamese. Methods: A case control study was performed involving 122 patients with CBZ or allopurinol induced SCARs and 120 drug tolerant controls. Results: HLA-B*58:01 was strongly associated with allopurinol-induced SCARs and strongly correlated with SNP rs9263726. HLA-B*15:02 was associated with CBZ-induced Stevens–Johnson syndrome/toxic epidermal necrolysis but not with drug-induced hypersensitivity syndrome/drug rash with eosinophilia and systemic symptoms. No association was found between HLA-A*31:01 and CBZ-induced SCARs. HLA-B*58:01 and rs3909184 allele A with renal insufficiency were shown to increase the risk of allopurinol-induced SCARs. Conclusion: HLA-B*58:01 and HLA-B*15:02 confer susceptibility to allopurinol-induced SCARs and CBZ-induced SJS/TEN in Vietnamese. Single nucleotide polymorphism rs9263726 can be used as a surrogate marker in identifying HLA-B*58:01.


2020 ◽  
pp. 96-99
Author(s):  
Shatavisa Mukherjee ◽  
Debajyoti Saha ◽  
Shreyashi Dasgupta ◽  
Santanu Kumar Tripathi

Stevens–Johnson syndrome and toxic epidermal necrolysis are well-known severe cutaneous adverse reactions, with >100 medications previously implicated, most frequently sulfonamide antibiotics. Ursodeoxycholic acid (UDCA), normally present in human bile at a low concentration, is used for the treatment of various cholestatic disorders. Reports of UDCA causing cutaneous complications are, however, rare. The present report describes a suspected case of UDCA-induced Stevens–Johnson syndrome–toxic epidermal necrolysis overlap in a 24-year-old female, admitted with a whole-body maculopapular rash with oromucocutaneous ulceration and skin desquamation. The patient was managed with supportive care, including fluid and electrolyte replacement, corticosteroids, antibiotics, antihistamines, and intravenous Ig. Early identification, prompt intervention with effective care, and support are the key action points in these severe cutaneous adverse reactions.


2021 ◽  
Vol 22 (14) ◽  
pp. 7527
Author(s):  
Manabu Yoshioka ◽  
Yu Sawada ◽  
Motonobu Nakamura

In accordance with the development of human technology, various medications have been speedily developed in the current decade. While they have beneficial impact on various diseases, these medications accidentally cause adverse reactions, especially drug eruption. This delayed hypersensitivity reaction in the skin sometimes causes a life-threatening adverse reaction, namely Stevens-Johnson syndrome and toxic epidermal necrolysis. Therefore, how to identify these clinical courses in early time points is a critical issue. To improve this problem, various biomarkers have been found for these severe cutaneous adverse reactions through recent research. Granulysin, Fas ligands, perforin, and granzyme B are recognized as useful biomarkers to evaluate the early onset of Stevens-Johnson syndrome and toxic epidermal necrolysis, and other biomarkers, such as miRNAs, high mobility group box 1 protein (HMGB1), and S100A2, which are also helpful to identify the severe cutaneous adverse reactions. Because these tools have been currently well developed, updates of the knowledge in this field are necessary for clinicians. In this review, we focused on the detailed biomarkers and diagnostic tools for drug eruption and we also discussed the actual usefulness of these biomarkers in the clinical aspects based on the pathogenesis of drug eruption.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 847
Author(s):  
Fumi Miyagawa ◽  
Hideo Asada

Although the incidence of severe cutaneous adverse reactions (SCARs) to medications is very low, SCARs can result in disability or even death if they are not diagnosed and treated properly. As the rapid recognition of SCARs is essential, it is necessary to develop diagnostic markers for them that can also be used to assess severity and predict outcomes in the early phase. In addition, it is important to identify novel therapeutic targets for SCARs. Chemokines are chemotactic cytokines that control the migratory patterns and locations of immune cells and usually exhibit markedly specific associations with certain human diseases. In Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN), the Th1-associated chemokines chemokine (C-X-C motif) ligand 9 (CXCL9) and CXCL10 predominate, while in drug-induced hypersensitivity syndrome (DIHS)/drug reaction with eosinophilia and systemic symptoms (DRESS), the levels of the Th2-associated chemokines chemokine (C-C motif) ligand 17 (CCL17) and CCL22 are markedly elevated. We suggest that the distinct chemokine profiles of SJS/TEN and DIHS/DRESS can be used to aid their differential diagnosis. CXCL10 has also been reported to be associated with the development of long-term sequelae in DIHS/DRESS. This review focuses on the chemokines involved in the pathogenesis and adjuvant diagnosis of SCARs, particularly SJS/TEN and DIHS/DRESS, but also provides a brief overview of SCARs and the chemokine superfamily. As it is being increasingly recognized that an association exists between human herpesvirus 6 (HHV-6) and DIHS/DRESS, the possible roles of the chemokine/chemokine receptor homologs encoded by HHV-6 in the pathogenesis of DIHS/DRESS are also discussed.


2020 ◽  
Vol 21 (14) ◽  
pp. 985-994
Author(s):  
Dinh van Nguyen ◽  
Hieu Chi Chu ◽  
Christopher Vidal ◽  
Janet Anderson ◽  
Nguyet Nhu Nguyen ◽  
...  

Aim: To examine gene expression in different clinical phenotypes of allopurinol-induced severe cutaneous adverse reactions (SCARs). Materials & methods: Gene expression profiling was performed using microarray on 11 RNA samples (four controls, three hypersensitivity syndrome/drug rash with eosinophilia and systemic symptoms, four Stevens–Johnson syndrome/toxic epidermal necrolysis) followed by quantitative real-time PCR in a total of 11 SCARs patients and 11 controls. Results: The biological pathways which were significantly enriched in differentially expressed genes in Stevens–Johnson syndrome/toxic epidermal necrolysis compared with hypersensitivity syndrome/drug rash with eosinophilia and systemic symptoms patients included; cell surface interactions at the vascular wall, immunoregulatory interactions at the immunological synapse and MyD88 signaling pathways. Overexpression of miR146a occurred in allopurinol-tolerant HLA-B*58:01 carriers. Conclusion: Biological pathways are identified which appear to be implicated in determining clinical phenotypes in allopurinol-induced SCARs. Overexpression of miR146a is potentially important for allopurinol tolerance in HLA-B*58:01 carriers.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ravindranath Brahmadeo Chavan ◽  
Vasudha Abhijit Belgaumkar ◽  
Nitika S. Deshmukh ◽  
Amruta Patil ◽  
Vijay Deepak Joshi

Introduction: Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a rare, idiosyncratic subset of drug-induced hypersensitivity syndrome manifesting as skin eruption, fever, lymphadenopathy, hematologic abnormalities, and multi-organ involvement. It presents usually after a latent period of 2 to 6 weeks as a diffuse erythematous rash with systemic symptoms and facial edema. It is now recognized as one of the severe cutaneous adverse reactions (SCAR) associated with high mortality, chiefly because of derangement of renal or liver functions. The cutaneous morphologies can be myriad, encompassing maculopapular, exfoliative dermatitis-like, pustular, erythema multiforme-like, Stevens-Johnson syndrome-like, and toxic epidermal necrolysis-like presentations. Case Presentation: We hereby report two young males who developed pruritic exfoliating erythematous rash after taking cephalosporin with paradoxical worsening despite drug withdrawal. They were diagnosed with ‘atypical DRESS syndrome’ according to the Japanese study group severe cutaneous adverse reactions (J-SCAR) criteria and treated successfully with systemic steroids and emollients. The J-SCAR scoring and the concept of atypical DRESS are useful in situations, where either all clinical and laboratory criteria are not present simultaneously, or typical clinical presentations wherein human herpes virus-6 (HHV-6) reactivation cannot be documented. Conclusions: These two cases were used to illustrate the hitherto obscure concept of atypical DRESS syndrome that presented with compatible clinical features but did not satisfy all the requisite criteria. We also highlight cephalosporins (one of the most commonly prescribed standard group of drugs) as a plausible but infrequently reported cause of this severe adverse cutaneous drug reaction.


2019 ◽  
Vol 25 (36) ◽  
pp. 3872-3880 ◽  
Author(s):  
Marcel M. Bergmann ◽  
Jean-Christoph Caubet

Severe cutaneous adverse reactions (SCAR) are life-threatening conditions including acute generalized exanthematous pustulosis (AGEP), Stevens-Johnson Syndrome (SJS), toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS). Diagnosis of causative underlying drug hypersensitivity (DH) is mandatory due to the high morbidity and mortality upon re-exposure with the incriminated drug. If an underlying DH is suspected, in vivo test, including patch tests (PTs), delayed-reading intradermal tests (IDTs) and in vitro tests can be performed in selected patients for which the suspected culprit drug is mandatory, or in order to find a safe alternative treatment. Positivity of in vivo and in vitro tests in SCAR to drug varies depending on the type of reaction and the incriminated drugs. Due to the severe nature of these reactions, drug provocation test (DPT) is highly contraindicated in patients who experienced SCAR. Thus, sensitivity is based on positive test results in patients with a suggestive clinical history. Patch tests still remain the first-line diagnostic tests in the majority of patients with SCAR, followed, in case of negative results, by delayed-reading IDTs, with the exception of patients with bullous diseases where IDTs are still contra-indicated. In vitro tests have shown promising results in the diagnosis of SCAR to drug. Positivity is particularly high when the lymphocyte transformation test (LTT) is combined with cytokines and cytotoxic markers measurement (cyto-LTT), but this still has to be confirmed with larger studies. Due to the rarity of SCAR, large multi-center collaborative studies are needed to better study the sensitivity and specificity of in vivo and in vitro tests.


Sign in / Sign up

Export Citation Format

Share Document