scholarly journals Simulation of Minichannel Liquid Based Thermoelectric Cooling System by Changing Dimension of Minichannel and Type of Heat Transfer Fluid

Author(s):  
Soheb Khan Sayeed Khan

Abstract: In recent time, due to exponential growth in electronic devices there is significant increase in heat dissipating element like integrated circuits(IC), graphical 2Assistant Professor, processing units (GPU) and central processing units (CPU). If there is no proper arrangement for heat removal it can permanently damage whole system. There are several methods used for this, one of which is thermoelectric cooling which works on peltier effect, thermoelectric devices with proper cooling arrangement act like heat pump which removes heat from one side and provide it to another side. The drawback of this system is low efficiency. In this project CFD analysis is done for minichannels of different dimensions along with thermoelectric. Simulation is performed by changing parameters such as hydraulic diameter of minichannel, changing type of heat transfer fluid and mass flow rate of fluid. The study reveals that by optimizing these parameters performance of thermoelectric system can be improved. The aim of this study is to optimize these parameters in order to improve overall heat transfer coefficient and coefficient of performance of the system. Keywords: Thermoelectric cooling, Peltier effect, Minichannel, Overall heat transfer, CFD

Author(s):  
S. J. Young ◽  
D. Janssen ◽  
E. A. Wenzel ◽  
B. M. Shadakofsky ◽  
F. A. Kulacki

Onboard liquid cooling of electronic devices is demonstrated with liquid delivered externally to the point of heat removal through a conformal encapsulation. The encapsulation creates a flat microgap above the integrated circuit (IC) and delivers a uniform inlet coolant flow over the device. The coolant is Novec™ 7200, and the electronics are simulated with a resistance heater on a 1:1 scale. Thermal performance is demonstrated at power densities of ∼1 kW/cm3 in the microgap. Parameters investigated are pressure drop, average device temperature, heat transfer coefficient, and coefficient of performance (COP). Nusselt numbers for gap sizes of 0.25, 0.5, and 0.75 mm are reduced to a dimensionless correlation. With low coolant inlet subcooling, two-phase heat transfer is seen at all mass flows. Device temperatures reach 95 °C for power dissipation of 50–80 W (0.67–1.08 kW/cm3) depending on coolant flow for a gap of 0.5 mm. Coefficients of performance of ∼100 to 70,000 are determined via measured pressure drop and demonstrate a low pumping penalty at the device level within the range of power and coolant flow considered. The encapsulation with microgap flow boiling provides a means for use of higher power central processing unit and graphics processing unit devices and thereby enables higher computing performance, for example, in embedded airborne computers.


2018 ◽  
Vol 26 (02) ◽  
pp. 1850016 ◽  
Author(s):  
K. M. Ariful Kabir ◽  
Rifat A. Rouf ◽  
M. M. A. Sarker ◽  
K. C. Amanul Alam ◽  
Bidyut B. Saha

Heat recovery ensures optimum usage of the collected energy, and thus, minimizes heat loss for a solar adsorption chiller. Two-bed adsorption chiller with conventional single stage, run by direct solar coupling with heat recovery, has been studied mathematically. In a heat recovery adsorption refrigeration system, to facilitate heat transfer, heat transfer fluid is distributed between two adsorbers maintaining the same mass flow rate. There is no mass transfer between system components during this phase. It is a semi-continuous system performed between two adsorption beds. After completion of desorption/condensation mode, heat transfer fluid is allowed to circulate between the heated desorber and the cooled adsorber. This process distributes some heat of the desorption bed to the adsorber preparing it for the next preheating mode where heat transfer between them is done adiabatically. Consequently, the performance has been checked and a satisfactory increase in the Coefficient of Performance (COP) (approximately 15%) has been detected in the calculated results for the heat recovery operation. It is also observed that the heat recovery process enhances the working hour and overall performances of the solar heat driven adsorption chiller.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3298
Author(s):  
Gianpiero Colangelo ◽  
Brenda Raho ◽  
Marco Milanese ◽  
Arturo de Risi

Nanofluids have great potential to improve the heat transfer properties of liquids, as demonstrated by recent studies. This paper presents a novel idea of utilizing nanofluid. It analyzes the performance of a HVAC (Heating Ventilation Air Conditioning) system using a high-performance heat transfer fluid (water-glycol nanofluid with nanoparticles of Al2O3), in the university campus of Lecce, Italy. The work describes the dynamic model of the building and its heating and cooling system, realized through the simulation software TRNSYS 17. The use of heat transfer fluid inseminated by nanoparticles in a real HVAC system is an innovative application that is difficult to find in the scientific literature so far. This work focuses on comparing the efficiency of the system working with a traditional water-glycol mixture with the same system that uses Al2O3-nanofluid. The results obtained by means of the dynamic simulations have confirmed what theoretically assumed, indicating the working conditions of the HVAC system that lead to lower operating costs and higher COP and EER, guaranteeing the optimal conditions of thermo-hygrometric comfort inside the building. Finally, the results showed that the use of a nanofluid based on water-glycol mixture and alumina increases the efficiency about 10% and at the same time reduces the electrical energy consumption of the HVAC system.


2021 ◽  
Vol 11 (7) ◽  
pp. 3236
Author(s):  
Ji Hyeok Kim ◽  
Joon Ahn

In a field test of a hybrid desiccant cooling system (HDCS) linked to a gas engine cogeneration system (the latter system is hereafter referred to as the combined heat and power (CHP) system), in the cooling operation mode, the exhaust heat remained and the latent heat removal was insufficient. In this study, the performance of an HDCS was simulated at a humidity ratio of 10 g/kg in conditioned spaces and for an increasing dehumidification capacity of the desiccant rotor. Simulation models of the HDCS linked to the CHP system were based on a transient system simulation tool (TRNSYS). Furthermore, TRNBuild (the TRNSYS Building Model) was used to simulate the three-dimensional structure of cooling spaces and solar lighting conditions. According to the simulation results, when the desiccant capacity increased, the thermal comfort conditions in all three conditioned spaces were sufficiently good. The higher the ambient temperature, the higher the evaporative cooling performance was. The variation in the regeneration heat with the outdoor conditions was the most dominant factor that determined the coefficient of performance (COP). Therefore, the COP was higher under high temperature and dry conditions, resulting in less regeneration heat being required. According to the prediction results, when the dehumidification capacity is sufficiently increased for using more exhaust heat, the overall efficiency of the CHP can be increased while ensuring suitable thermal comfort conditions in the cooling space.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Zhao ◽  
Xiang Zhang ◽  
Chunlai Tian ◽  
Zhan Gao

As the heat transfer surface in the passive containment cooling system, the anticorrosion coating (AC) of steel containment vessel (CV) must meet the requirements on heat transfer performance. One of the wall surface ACs with simple structure, high mechanical strength, and well hydrophobic characteristics, which is conductive to form dropwise condensation, is significant for the heat removal of the CV. In this paper, the grooved structures on silicon wafers by lithographic methods are systematically prepared to investigate the effects of microstructures on the hydrophobic property of the surfaces. The results show that the hydrophobicity is dramatically improved in comparison with the conventional Wenzel and Cassie-Baxter model. In addition, the experimental results are successfully explained by the interface state effect. As a consequence, it is indicated that favorable hydrophobicity can be obtained even if the surface is with lower roughness and without any chemical modifications, which provides feasible solutions for improving the heat transfer performance of CV.


Author(s):  
Muhsincan S¸es¸en ◽  
Cem Baha Akkartal ◽  
Wisam Khudhayer ◽  
Tansel Karabacak ◽  
Ali Kos¸ar

An efficient cooling system consisting of a plate, on which copper nanorods (nanorods of size ∼100nm) are integrated to copper thin film (which is deposited on Silicon substrate), a heater, an Aluminum base, and a pool was developed. Heat is transferred with high efficiency to the liquid within the pool above the base through the plate by boiling heat transfer. Near the boiling temperature of the fluid, vapor bubbles started to form with the existence of wall superheat. Phase change took place near the nanostructured plate, where the bubbles emerged from. Bubble formation and bubble motion inside the pool created an effective heat transfer from the plate surface to the pool. Nucleate boiling took place on the surface of the nanostructured plate helping the heat removal from the system to the liquid above. The heat transfer from nanostructured plate was studied using the experimental setup. The temperatures were recorded from the readings of thermocouples, which were successfully integrated to the system. The surface temperature at boiling inception was 102.1°C without the nanostructured plate while the surface temperature was successfully decreased to near 100°C with the existence of the nanostructured plate. In this study, it was proved that this device could have the potential to be an extremely useful device for small and excessive heat generating devices such as MEMS or Micro-processors. This device does not require any external energy to assist heat removal which is a great advantage compared to its counterparts.


Author(s):  
Susanne-Marie Kirsch ◽  
Felix Welsch ◽  
Lukas Ehl ◽  
Nicolas Michaelis ◽  
Paul Motzki ◽  
...  

Abstract Elastocaloric cooling uses solid-state NiTi-based shape memory alloy (SMA) as a non-volatile cooling medium and enables a novel environment-friendly cooling technology without global warming potential. Due to the high specific latent heats activated by mechanical loading/unloading, large temperature changes can be generated in the material. Accompanied by a small required work input, a high coefficient of performance is achievable. Recently, a fully-functional and illustrative continuous operating elastocaloric fluid cooling system based on SMA is developed and realized, using a novel mechanical concept for individual loading and unloading of multiple SMA wire bundles. The fluid-based heat transfer system is designed for efficient heat exchange between the stationary heat source/sink and the SMA elements, operates without any additional heat transfer medium. Rotation frequency and fluid flow-rate are adjustable during operation, which allows adapting the operation point to power- or efficiency-optimized demands. The versatile placement of the in- and outlets allows different duct lengths and counter-flow or parallel-flow experiments. To investigate the air flow parameters at the in- and outlets, as well as the crossflow between the hot and cold side, a measurement system is developed and integrated. In this contribution, the first measurement results of the output temperatures for inlet air flow variation in combination with different rotation frequencies are presented.


2019 ◽  
Vol 123 ◽  
pp. 01046 ◽  
Author(s):  
Ivan Sadovenko ◽  
Oleksandr Inkin ◽  
Nataliia Dereviahina ◽  
Yuliia Khryplyvets

The aim of the paper is justification of the economically efficient technological scheme for development of a thermal resource of “Stashkov” mine after its closure, ensuring the maintenance of a favorable energy and ecological-hydrogeological regime in the region. A geotechnological scheme of environmentally safe usage of mine water was justified, involving water pumping up to the surface, heat removal and water reverse pumping into the seams. The suggested circulation system is characterized by an increased energy balance, since it is used to extract almost all the groundwater heat, as well as part of the heat of host rocks. In order to estimate the effectiveness of usage of this technology, calculations of usage of mine water as a source of low-potential energy in heat pumps in comparison with other alternatives (groundwater and surface water streams) using Mathcad software were performed, and it was established that this gives great conversion coefficients of mine water. A geotechnological scheme of usage of mine water was developed, which considers heat transfer, filtration direction, velocity and temperature of groundwater during pumping and removal of heat-transfer fluid from an aquifer for heating and cooling of buildings. The mechanism of heat removal in a flooded rock massif of amine during liquidation was studied with justification of environmentally safe usage of mine water.


2014 ◽  
Vol 663 ◽  
pp. 213-217 ◽  
Author(s):  
M.M. Rahman ◽  
T.J. Hua ◽  
H.Y. Rahman

As an effort in reducing the dependency on fossil fuel, efforts have been gathered to develop electric vehicle (EV) for the past decades. Technology of electric vehicles (EV) has been initialized in developed countries. However, the latter have different geographical and environmental conditions. Therefore, the system of EV cannot be utilized directly in this country. The controller of an EV functions by utilizing a potentiometer; supplying a certain amount of voltage from the batteries to the motor by driver’s force applied to the acceleration pedal. This action generates a huge amount of heat due to the internal resistance of the controller (e.g. potentiometer). In order for an EV to operate at optimum condition, temperature of the controller has to be maintained at a certain limit. Hence an effective cooling system is required to be designed to fulfill the above condition. The objective of this paper is to present the design of the cooling system for the controller of an electric vehicle (EV). Two types of cooling system namely liquid cooled plate heat exchanger and forced air cooled finned structure are designed and evaluated to assess the behavior of heat transfer as well as effects of heat transfer fluids and cooling system material towards the heat removal rate. Simulation using Computational Fluid Dynamics (CFD) for both cooling systems has been carried out to have better understanding. CFD results are compared with some of the analytical results. The findings revealed that both systems are suitable to be implemented as EV controller cooling system in Malaysian Environment.


Author(s):  
Haleh Shafeie ◽  
Omid Abouali ◽  
Khosrow Jafarpour

This paper presents a numerical study of laminar forced convection in microchannels network heat sinks with fabricated offset pin-fins. A 3-dimensional mathematical model, for conjugate heat transfer in both solid and liquid is presented. For this aim the Navier-Stokes and energy equations for the liquid region and the energy equation for the solid region are solved simultaneously and the pressure drop together heat transfer characteristics of a single-phase microchannel heat sink were investigated. A typical microchannel was selected and it was shown that using offset pin-fins has a noticeable effect and heat removal rate can be increased using this technique. However the pressure drop is also highly increasing which leads to a low coefficient of performance for microchannel with this type of micro-structure.


Sign in / Sign up

Export Citation Format

Share Document