scholarly journals Effect of Wollastonite Mineral on Fresh and Mechanical Properties of Concrete

Author(s):  
Aman Sharma

Abstract: The wollastonite mineral are the main source of solid-state reaction from limestone and silica sand. Wollastonite is used as replacement of both sand and cement depending on size of wollastonite. Present study will provide better understanding of mechanical and durability properties of concrete in which cement is partially replaced with wollastonite. The present paper would contribute to the efforts being made in the field of concrete technology towards development of concretes possessing good strength and durability properties along with economic and ecological advantage. Based on the study, valuable advice will be given for concrete structures. It was found that with increase in amount of wollastonite, in concrete with workability of concrete decreases. It was also found that initial day’s strength is less for wollastonite concrete compare to control mix, but as the age increases they show good improvement in strength due to pozzalanic reaction. Optimum dosage is observed to be 15% WP which shows more strength compared to control mix. Keywords: wollastonite mineral, workability, compressive strength, split tensile strength.

2018 ◽  
Vol 24 (1) ◽  
pp. 71
Author(s):  
Widodo Kushartomo ◽  
Dewi Permata Sari

This study is describe about the mechanical properties of normal concrete by adding of marble flour based on the mixed plan made. The compressive strength of the planned test object fc '20.0 and fc' 30.0 MPa was prepared by using the ACI method. The addition of marble flour in a concrete mixture varies from 0%, 5%, 10%, 15%, 20% and 25% to the weight of the cement used. Concrete test specimens were made in the form of cylinders 15.0 cm in diameter, 30.0 cm in height and made in the form of concrete beams measuring 15.0 cm x 15.0 cm x 75.0 cm, the type of mechanical testing performed in the form of compressive strength tests on cylindrical specimen, split tensile strength test on cylindrical specimen and flexure test on beam specimen. Curing is done by immersion technique at 25ºC and the test is done when the concrete is 28 days old. The test results show that the addition of marble flour to the normal concrete mixture can increase its mechanical properties by 26% for compressive strength, 24% for split tensile strength, and 17% for flexural strength. 


2008 ◽  
Vol 1 (2) ◽  
pp. 113-120 ◽  
Author(s):  
A. C. Marques ◽  
J. L. Akasaki ◽  
A. P. M. Trigo ◽  
M. L. Marques

In this work it was evaluated the influence tire rubber addition in mortars in order to replace part of the sand (12% by volume). It was also intended to verify if the tire rubber treatment with NaOH saturated aqueous solution causes interference on the mechanical properties of the mixture. Compressive strength, splitting tensile strength, water absorption, modulus of elasticity, and flow test were made in specimens of 5cmx10cm and the tests were carried out to 7, 28, 56, 90, and 180 days. The results show reduction on mechanical properties values after addition of tire rubber and decrease of the workability. It was also observed that the tire rubber treatment does not cause any alteration on the results compared to the rubber without treatment.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 406
Author(s):  
L Krishnaraj ◽  
P T. Ravichandran ◽  
Shaik AarifIlahi ◽  
V Ramanathan

The strength of cement paste and aggregate components helps to decide the strength of the concrete, their properties of deformation, and the binding properties among the aggregate surface and cement paste. It is conceivable with many of the aggregates to form high strength concrete by increasing the cement paste strength, which can be controlled by choosing of water-content ratio and type of admixture dosage. The current scenario in the concrete technology and the accessibility of many kind of mineral and chemical admixtures, and special super plasticizer to gain the targeted compressive strength of a concrete. In this study MYK Remicrete PC30 and BASF Master Glennium ACE 30 were utilized as the admixtures as Add 1 and Add 2 which acts as high rate water reducing agents. These developments have led to increase uses of Rapid strength concrete. To compare the mechanical and durability properties of concrete using Fly ash and Admixtures the following tests were conducted on concrete tests specimens. Mechanical tests are to be conducted such as compressive strength tests, and tensile strength tests, durability tests like water absorption test, acid test by HCL, H2SO4 and HNO3. The result indicates that rate of development of compressive strength and tensile strength are higher for the concrete design mix which has HRWR admixture of 1% and FA of 20%.  


Author(s):  
Afzal Basha Syed ◽  
Jayarami Reddy B ◽  
Sashidhar C

In present era, high-strength concrete is progressively utilized in modern concrete technology and particularly in the construction of elevated structures. This examination has been directed to explore the properties of high-strength concrete that was delivered by using stone powder (SP) as an option of extent on sand after being processed. The aim of the research is to study the effect of replacement of sand with stone powder and substitution of cement with mineral admixtures (GGBS & Zeolite) on the mechanical properties of high strength concrete. The test results showed clear improvement in compression and split tensile nature of concrete by using stone powder and mineral admixtures together in concrete. The increment in the magnitude of compressive strength and split tensile strength are comparable with conventional concrete.


2021 ◽  
Vol 7 (2) ◽  
pp. 226-235
Author(s):  
Faisal K. Abdulhussein ◽  
Zahraa F. Jawad ◽  
Qais J. Frayah ◽  
ِAwham J. Salman

This paper investigates the effect of nano-papyrus cane ash as an additive on concretes’ mechanical and physical properties. Three types of concrete mixtures, 1:2:4, 1:1.5:3, and 1:1:2 were prepared for each mixture, nano-papyrus ash was added in five different dosages of 0.75, 1.5, 3, 4.5, and 6% by weight of cement; therefore, eighteen mixes would be studied in this work. Physical properties represented by dry density and slump were also measured for each mix. Moreover, to evaluate the mechanical properties development split tensile strength and compressive strength were obtained at age (7 and 28). Results manifested that the adding of nano ash developed the compressive strength and split tensile strength of concrete and the maximum enhancement recognized in the mixes with a content of 4.5% nano-papyrus in each studied mixture in this work. The slump test results indicated that the workability of concrete increased with adding nano-papyrus ash gradually with increasing nanoparticles' content. As well as, dry density was significant increased with nano-papyrus ratio; greater values were recorded in mixtures with 1.5-4.5% content of nano-papyrus. When comparing the concrete mixes used, it was found that the best results were obtained with 1:1:2 mixtures. This remarkable improvement in concrete properties considers the nano-papyrus is considered a cement economical and useful replacement for traditional construction material. Doi: 10.28991/cej-2021-03091649 Full Text: PDF


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Hongwang Ma ◽  
Qi Ma

This research investigated the use of sodium carboxymethyl cellulose (CMC) as a reinforcement to improve mechanical properties of loess soil found in northwestern China. The mechanical properties of loess were determined by unconfined compressive strength and split tensile strength tests. Three different contents of CMC were adopted: 0.5%, 1.0%, and 1.5%. The results showed that utilizing CMC reduced the maximum dry density of the loess. The compressive strength, tensile strength, and Young’s modulus are enough to construct low-rise buildings when the CMC content exceeds 1.0%, based on existing standards. This research thus provides a prospective sustainability method for loess stabilization.


2015 ◽  
Vol 10 (4) ◽  
pp. 155892501501000
Author(s):  
Ramesh Kanagavel ◽  
K. Arunachalam

Mechanical properties of quaternary blending cement concrete reinforced with hybrid fibers are evaluated in this experimental study. The steel fibers were added at volume fractions of 0.5%, 1%, and 1.5 % and polypropylene fibers were added at 0.25% and 0.5% by weight of cementitious materials in the concrete mix individually and in hybrid form to determine the compressive strength, split tensile strength, flexural strength and impact resistance for all the mixes. The experimental results revealed that fiber addition improves the mechanical properties and also the ductility and energy absorption of the concrete. The results also demonstrate that the hybrid steel – polypropylene fiber reinforced concrete performs better in compressive strength, split tensile strength, flexural strength and impact resistance than mono steel and mono polypropylene fiber reinforced concrete.


2019 ◽  
Vol 258 ◽  
pp. 01020
Author(s):  
Rahmi Karolina ◽  
Abdiansyah Putra Siregar

One of the development of concrete technology in construction’s world is Self-Compacting Concrete. Self-Compacting Concrete (SCC) is an innovative concrete that able to “flow” and condensed by gravity and its own weight with little vibration or even without a vibration device at all. However, these concrete still have deficiencies like general concrete that is weak to tensile. To increase the tensile strength of the concrete is by adding fiber into the mix. One type of fiber that can be used as an additive to the mix is Polypropylene fibers. This study aims to determine the effect of adding polypropylene fibers to the mechanical properties and characteristics of SCC concrete and to know the optimal polypropylene fiber content in the manufacture of Self Compacting Concrete. Fiber addition variations are 0 kg / m3; 0.25 kg / m3; 0.5 kg / m3 and 0.75 kg / m3. The result of the research showed that the variation of 0.5 kg / m3 and 0.75 kg / m3 addition of fibers didn’t fulfill the requirements to be categorized as a SCC concrete. The results of hard concrete test showed the highest compressive strength that is on the SCC PP concrete of 22.31 MPa at the age of 1 day and 46.24 at the age of 28 days. The highest strength is on the SCC 0.25 PP concrete of 6.52 MPa at the age of 1 day and 10.07 at the age of 28 days. The highest flexural strength is on the SCC 0.25 PP concrete of 6.76 at the age of 1 day and 8.60 at the age of 28 days.


2018 ◽  
Vol 195 ◽  
pp. 01008
Author(s):  
Puput Risdanareni ◽  
Januarti Jaya Ekaputri ◽  
Ike Maulidiyawati ◽  
Poppy Puspitasari

This paper investigates the effect of sintered fly ash lightweight aggregate as coarse aggregate substitution on the mechanical properties of concrete. The lightweight aggregate (LWA) was produced using the cold bonded method and then sintered at a temperature of 900°C. An alkaliactivated system was applied as a binding agent of the LWA. Fly ash was used as precursor while sodium hydroxide and sodium silicate were employed as alkali activators. Three variations of the LWA dosage were performed, which were 0%, 50%, and 100 % of the volume of coarse aggregate in the concrete mixture. The mechanical properties of the concrete investigated in this research are the compressive strength and split tensile strength. The result showed that the mechanical properties of the concrete slightly decrease along with the increased dosage of the LWA in the mixture. However, employing sintered fly ash the LWA is proven as an effective solution in reducing the concrete density without sacrificing its strength.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 255 ◽  
Author(s):  
K Manju ◽  
B Dhanush Kumar ◽  
S Suresh Kumar ◽  
S Nirmal Kumar

Natural aggregate is not an environmental friendly material due to its destructive resource consuming nature. GGBS is a byproduct of steel industries, whereas GGBFS mixed with cement of 1:2 ratio making an artificial aggregate, whereas hardening powder used to spray made upon artificial aggregate to develop the strength of concrete. The basic properties of natural and artificial aggregates were determined. The mix design to be determined obtained for conventional concrete of control mix of grade M 25. The different mix proportions were prepared by replacement of 20, 40, 60, 80, 100 of natural aggregate instead of artificial aggregate. To check the compressive strength, split tensile strength determine. Based on the result we choose optimum percentage of aggregate and make it and concrete to determine the durability properties of concrete compared with natural aggregate.  


Sign in / Sign up

Export Citation Format

Share Document