scholarly journals Use of Industrial Waste – (Red Mud) in the Production of Self Compacting Concrete

Author(s):  
Mr. Sunil Donga

Abstract: Red mud is industrial waste and causing threat to environment so to reduce the cost of the construction also to make structure more durable. Aluminium is now consumed during manufacture red mud, which is used and while remaining red mud has been undertaken sothat it can be used for construction fashion of the concrete by blending or by replacing the cement by red mud. Keywords: Red mud, self-compacting concrete, Compressive Strength, Tensile Strength, Flexural Strength

2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


2020 ◽  
Vol 170 ◽  
pp. 06018
Author(s):  
Sandeep L. Hake ◽  
S. S. Shinde ◽  
Piyush K. Bhandari ◽  
P. R. Awasarmal ◽  
B. D. Kanawade

Self Compacting Concrete (SCC) is a specially developed concrete for concreting under extreme condition of inaccessibility from heights. It is capable to flow under influence of its own weight. It could be used when encountered with dense reinforcement and complex structural design. Problem of segregation as well as bleeding is eliminated and vibration is not required for compaction. As concrete is strong in compression and weak in tension. Hence to make it strong in tension, discontinuous Anti-Crack high dispersion glass fibers are added. SCC mix prepared with addition of discontinuous glass fibers is called as Glass Fiber reinforced Self Compacting Concrete (GFRSCC). In this paper an experimental study has been carried out to check the effect of Anti-Crack high dispersion glass fibers on the compressive strength, split tensile strength and flexural strength of SCC. The result show that, as compared to the Normal SCC, the compressive strength of GFRSCC increases by 2.80% and 12.42%, the split tensile strength of GFRSCC increases by 4.47% and 25.12% and the flexural strength of SCC increases by 6.57% and 14.34% when the Cem-FIL Anti-Crack HD glass fibers were added as 0.25% and 0.50% respectively by the weight of total cementitious material contents. The addition of 0.25% Cem-FIL Anti-Crack HD glass fibers to SCC has not much affect on the workability of Normal SCC. Whereas, addition of 0.50% Cem-FIL Anti-Crack HD glass fibers reduces the workability of SCC.


2019 ◽  
Vol 258 ◽  
pp. 01020
Author(s):  
Rahmi Karolina ◽  
Abdiansyah Putra Siregar

One of the development of concrete technology in construction’s world is Self-Compacting Concrete. Self-Compacting Concrete (SCC) is an innovative concrete that able to “flow” and condensed by gravity and its own weight with little vibration or even without a vibration device at all. However, these concrete still have deficiencies like general concrete that is weak to tensile. To increase the tensile strength of the concrete is by adding fiber into the mix. One type of fiber that can be used as an additive to the mix is Polypropylene fibers. This study aims to determine the effect of adding polypropylene fibers to the mechanical properties and characteristics of SCC concrete and to know the optimal polypropylene fiber content in the manufacture of Self Compacting Concrete. Fiber addition variations are 0 kg / m3; 0.25 kg / m3; 0.5 kg / m3 and 0.75 kg / m3. The result of the research showed that the variation of 0.5 kg / m3 and 0.75 kg / m3 addition of fibers didn’t fulfill the requirements to be categorized as a SCC concrete. The results of hard concrete test showed the highest compressive strength that is on the SCC PP concrete of 22.31 MPa at the age of 1 day and 46.24 at the age of 28 days. The highest strength is on the SCC 0.25 PP concrete of 6.52 MPa at the age of 1 day and 10.07 at the age of 28 days. The highest flexural strength is on the SCC 0.25 PP concrete of 6.76 at the age of 1 day and 8.60 at the age of 28 days.


2012 ◽  
Vol 587 ◽  
pp. 67-76
Author(s):  
Jabbar Abbas Jabir Al Khafaji ◽  
Najah Mahdi Lateef Al Maimuri ◽  
Abdul Hadi Meteab Hassan Al Sa'adi

A study of a mechanical performance(Compressive strength, flexural strength, and splitting tensile strength)of self-compacting (SCC) and conventional (NCC)concretemixes and some physical properties of the mixes made of Portland cement under the effect of acidic solution attackare made. Trichloroacetic and Salicycilic acids are selected and used in this study. It is found that the reduction percentage in compressive strength is about 6% and 3% under the effect of Trichloroacetic acidic solution whereas itisabout 8% under the effect the salicycilic acidic solution attackfor both SCC and NCC mixes after 62 days of treatment for bothSCC and NCC mixes respectively. The reduction percentage in flexural strengthisabout 27% and 37% under the effect of the Trichloroacetic acidic solution attack whereas itis about 59% and 79% under the effect the salicycilic acidic solution attackfor both SCC and NCC mixes respectivelyafter 62 days of treatment. The reduction percentage in splitting tensile strength is about 60% and 63% under the effect the Trichloroacetic acidic solution attack whereas it is 70% and 88% under the effect of the salicycilic acidic solution attack% for both SCC and NCC mixes after 62 days of treatment. At the age 90 days, the SCC and NCC mixes have a reductionpercentage in the cubes weight of 3% and 4% whereas there is an increasing in volume of 0.3% and 0.4% respectively under the effect of salicyclic acid solution attack.It is observed that SCC mixes offer more resistant and less deterioration against acidic solutions attack.


2020 ◽  
Vol 304 ◽  
pp. 75-80
Author(s):  
Jonbi ◽  
Resti Nur Arini ◽  
Marisa Permatasari ◽  
Partogi H. Simatupang

This research is a comparative study, the use of carbon fiber and steel fiber for Self-Compacting Concrete (SCC). In previous studies, it was proven that the addition of steel fibers can increase the compressive and tensile strength of SCC. While carbon fiber is one of the most widely used materials for structural reinforcement in recent years. Therefore it is necessary to do a comparative study of the use of carbon fiber if applied to SCC. The percentage increase in carbon fiber and steel is 0.5%, 1%, and 1.5%. Then do the testing of: slump test, compressive strength, tensile strength and flexural strength. The results showed the optimal percentage of steel fiber addition of 1.5%, can increase the compressive strength of SCC by 11%. However carbon fiber and steel do not increase the tensile strength of SCC, and tend to reduce flexural strength. Other results show that carbon fiber is not suitable for use in SCC.


SINERGI ◽  
2020 ◽  
Vol 24 (3) ◽  
pp. 223
Author(s):  
Hakas Prayuda ◽  
Berkat Cipta Zega ◽  
Fanny Monika ◽  
Fadillawaty Saleh ◽  
Martyana Dwi Cahyati

Self Compacting Concrete (SCC) is concrete with high fluidity so that it can flow and fill the spaces in the mold without the compaction process. This study discusses the effect of the adding of kaolin and polypropylene fibers in order to increase the flowability, compressive strength, flexural strength, and tensile strength in self-compacting concrete. The additional material of kaolin was 5%, 10%, and 15% of the cement weight. The polypropylene fibers were 1%, 1.5%, and 2%. The flowability test, which was used, was Table flow, V-Funnel, and L-Box. Compressive strength testing was conducted when the concrete was 7, 14, and 28 days old. The flexural test was performed with a measurement of 150 x 150 x 600 mm as many as 18 specimens tested at the age of 28 days. The results showed that the addition of kaolin and polypropylene fibers met the flowability specifications of self-compacting concrete. The addition of polypropylene can increase the flexural strength and tensile strength of the concrete beam, but cannot increase the compressive strength of self-compacting concrete.


2019 ◽  
Vol 8 (2) ◽  
pp. 8-15
Author(s):  
H. R. Arun Kumar ◽  
B. Shivakumaraswamy

Self Compacting Concrete is a material used in the construction that has excellent deformability in the fresh state and high resistance of segregation, and can be replaced and compacted under its self-weight without applying vibration which leads to substantial advantages related to better homogeneity, enhancement of working environment and improvement in the productivity by increasing the speed of construction. Concrete can be formulated with high compressive strength but always has lower tensile strength. Tensile strength and other properties of concrete can be enhanced by adding fibers due to which the workability of concrete mix reduces and in order to achieve the desired Workability super-plasticizers is added. In the present work the use of fibrofor fiber in the production of self-compacting concrete (SCC) has been studied to identify how fresh and hardened properties of SCC are affected by the addition of fibers. The fibrofor fiber of 19mm standard length is incorporated into the SCC mixtures as 0.5kg/m3, 1.0kg/m3, 1.5kg/m3of concrete. Test on fresh SCC like slump Flow test, T50, V-Funnel test, J-Ring slump test and L-Box test were performed for an understanding of flow of SCC and tests on hardened properties like flexural strength, compressive strength and split tensile strength have been conducted to identify the hardened properties of SCC produced with fibrofor fiber. A comparative study between plain concrete, SCC without fiber and SCC with fiber has been done. Mix design for M40 grade concrete has been done according to EFNARC guidelines. The results reveal that the use of fibro for fiber decreases the workability but increases the mechanical properties of SCC. The optimum volume fraction of fibrofor fiber is determined as 1kg/m3 considering the optimized flexural strength and split tensile strength based properties of SCC. Due to increase in strength properties of fiber reinforced SCC that can be used for pavement construction and various other structures such as buildings, water retaining structures, reservoir structures and tunnel etc.


2021 ◽  
Vol 55 (4) ◽  
Author(s):  
Dhanalakshmi A ◽  
M. Shahul Hameed

High-strength self-compacting concrete (HSSCC) is widely used as an eco-effective structure that is more durable than traditional cement that is more prone to demolitions and damage. One of today’s notable innovations is self-compacting concrete (SCC). The variety of materials and the utilization of siphons encourage the concrete’s use, which is significant. The worries about complex pieces are understandable due to the ease, with which precarious projecting zones are formed. This article presents high-strength self-compacting concrete, including quartz sand (QS) and marble-sludge powder (MSP) used as a partial replacement of fine aggregate (M sand). The substitution impact of QS and MSP on the strength of HSSCC is investigated. Further, V-funnel, L-box, slump flow, J-ring and slump cone are used to investigate the chemical, physical and mechanical properties such as splitting tensile strength, compressive strength, bond strength and flexural strength. The replacement of fine aggregate with 15 % of marble-sludge powder and 45 % of quartz sand (HSSCC concrete) gives an unprecedented outcome in the form of solidity and consistency. The findings show that the HSSCC 9 mix exhibits the compressive strength, splitting tensile strength, flexural strength and, more noteworthy, bond strength of 82.25 MPa, 8.10 MPa, 27.10 MPa and 11.89 MPa, respectively.


2016 ◽  
Vol 692 ◽  
pp. 74-81 ◽  
Author(s):  
J.R. Thirumal ◽  
R. Harish

Self – compacting concrete (SCC) is a high – performance concrete that can flow under its own weight to completely fill the form work and self-consolidation without any mechanical vibration. Green concrete is defined as a concrete which uses waste material as at least one of its components, or its production process does not lead to environmental destruction. Such concrete can accelerate the placement, reduce the labor requirements needed for consolidation, finishing and eliminate environmental pollution. One alternative to reduce the cost of self-compacting concrete is the use of mineral admixtures such as silica fume, ground granulated blast furnace slag and fly ash, which is finely, divided materials added to concrete during mixture procedure .When mineral admixtures replace a part of the Portland cement, the cost of self-compacting concrete will be reduced especially if the mineral admixtures are waste or industrial by-product. The various tests for compressive, tensile and flexural strength are determined for various specimens with certain percentages ( 10 % ,30 % ) of replacement like silica fume, fly ash and combination of both fly ash and silica fume. Admixture combination of fly ash and silica fume replacing 30 % results in maximum compressive strength. Admixture of fly ash replacing 10 % results in maximum tensile and flexural strength. In order to make SCC effective, trials can be made with partial replacement of combining silica fume and fly ash to achieve the higher compressive strength. Minimum replacement of fly ash can be investigated to achieve higher tensile and flexural strength .With respect to the above combination of replacement SCC can be dealt with its several specializations to make it effective.


2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


Sign in / Sign up

Export Citation Format

Share Document