scholarly journals Study of Wear Behaviour of Titanium Grade 2 Using Application of Taguchi Method

Author(s):  
Ajay K Kahale

Abstract: Titanium Grade 2 sample piece were subjected to wear on standard linear reciprocating tribometer machine for dry sliding condition in the constant temperature. Taguchi method were use to predict the wear rate against parameter such as Load, Frequency, and time. Signal to noise ratio and ANOVA were used study the impact of these three parameter on the wear rate. In conclusion, the major statistical factor affecting wear rate is load, followed by frequency and duration. Multiple linear regression equations are developed. Keywords: Titanium grade 2, wear rate, Tribometer, ANOVA

2016 ◽  
Vol 689 ◽  
pp. 81-85
Author(s):  
Y. Şahin ◽  
Patrick de Baets

Dry sliding wear behaviours of polyamides of were investigated by Taguchi method using a pin-on-flat plate configuration. L9 orthogonal array and analysis of variance (ANOVA) were applied to investigate the influence of process parameters on wear rate. The experimental results indicated that Signal-to-Noise ratio (SNR) decreased with increasing elongation and decreased with increasing load slightly, but increased with increasing speed. ANOVA revealed that elongation at break exerted a great effect on the wear rate, which was followed by speed, respectively. Optimal process parameter was obtained for LFX type of polymer against smooth hardened steel.


ROTASI ◽  
2014 ◽  
Vol 16 (4) ◽  
pp. 9
Author(s):  
Petrus Londa

Keausan elektroda pada proses EDM die sinking adalah peristiwa yang tidak dapat di hindari, namun dengan mengatur variabel pemotongan yang sesuai, diharapkan keausan yang terjadi se-minim mungkin sehingga dapat menjamin tingkat akurasi ukuran pada benda kerja yang di hasilkan. Pada penelitian ini di pilih metode Taguchi untuk menentukan variabel pemotongan yang optimum pada elektroda tembaga dan benda kerja dari bahan K460 (amutit S). Taguchi L9 orthogonal array, signal-to-noise ratio (S/N ratio) dan analysis of variance (ANOVA) dapat menentukan performa variabel proses EDM (PON, POFF, QDON dan GAP) dengan parameter yang di teliti adalah Electrode Wear Rate (EWR) dan Material Removal Rate (MRR). Hasil dari eksperimen tersebut di tampilkan dalam bentuk tabel-tabel dan grafik


2019 ◽  
Vol 11 (22) ◽  
pp. 2603
Author(s):  
George Xian ◽  
Hua Shi ◽  
Cody Anderson ◽  
Zhuoting Wu

Medium spatial resolution satellite images are frequently used to characterize thematic land cover and a continuous field at both regional and global scales. However, high spatial resolution remote sensing data can provide details in landscape structures, especially in the urban environment. With upgrades to spatial resolution and spectral coverage for many satellite sensors, the impact of the signal-to-noise ratio (SNR) in characterizing a landscape with highly heterogeneous features at the sub-pixel level is still uncertain. This study used WorldView-3 (WV3) images as a basis to evaluate the impacts of SNR on mapping a fractional developed impervious surface area (ISA). The point spread function (PSF) from the Landsat 8 Operational Land Imager (OLI) was used to resample the WV3 images to three different resolutions: 10 m, 20 m, and 30 m. Noise was then added to the resampled WV3 images to simulate different fractional levels of OLI SNRs. Furthermore, regression tree algorithms were incorporated into these images to estimate the ISA at different spatial scales. The study results showed that the total areal estimate could be improved by about 1% and 0.4% at 10-m spatial resolutions in our two study areas when the SNR changes from half to twice that of the Landsat OLI SNR level. Such improvement is more obvious in the high imperviousness ranges. The root-mean-square-error of ISA estimates using images that have twice and two-thirds the SNRs of OLI varied consistently from high to low when spatial resolutions changed from 10 m to 20 m. The increase of SNR, however, did not improve the overall performance of ISA estimates at 30 m.


2020 ◽  
Vol 10 (3) ◽  
pp. 824
Author(s):  
Imran Mohsin ◽  
Kai He ◽  
Zheng Li ◽  
Feifei Zhang ◽  
Ruxu Du

Surface finishing and polishing are important quality assurance processes in many manufacturing industries. A polished surface (low surface roughness) is linked with many useful properties other than providing an appealing gloss to the product, such as surface friction, electrical and chemical resistance, thermal conductivity, reflection, and product life. All these properties require an efficient polishing system working with the best machining parameters. This study analyzed the effects of the different input polishing parameters on the polishing efficiency and torque in the robotic polishing system for the circular-shaped workpieces (such as ring, cylinder, sphere, cone, etc.) by using the Taguchi method and analysis of variance (ANOVA). A customized rotatory passive gripper is designed to hold the watch bezel during polishing. Under the design of experiments (DOE) technique, Taguchi’s L 18 array is selected to find the optimized process parameters for polishing efficiency (based on surface roughness) and torque. Experimental results with the statistical analysis by signal-to-noise ratio and ANOVA (95% confidence level) confirms that the polishing force and tool speed are the most influencing parameter for polishing efficiency in the system. Linear regression equations are modeled for the polishing efficiency and torque. Finally, a confirmation test is conducted for the validation of the experimentation results against actual results.


2016 ◽  
Vol 51 (19) ◽  
pp. 2689-2706 ◽  
Author(s):  
Manjeet Singh ◽  
J S Saini ◽  
H Bhunia ◽  
Paramdeep Singh

In the present work, Taguchi method was used for the optimization of geometric parameters for double pin joint configurations. The orthogonal array, the signal-to-noise ratio, and analysis of variance were employed to study the effect of geometric parameters on the bearing strength of the joints. Geometric parameters, i.e. the distance from the free edge of the specimen to the diameter of the first hole (E/D) ratio, width of the specimen to the diameter of the hole (W/D) ratio, the distance between the two holes to the diameter of the hole (P/D) ratio and side width to the diameter of the hole (K/D) ratio were investigated for the serial and parallel hole configurations. The results demonstrate that the E/D ratio is the most significant parameter to increase the bearing strength in both serial and parallel pin joint configurations. Its percentage contribution is about 84.5% and 64.23% in serial and parallel pin joint configurations, respectively. Characteristic curve with Tsai–Wu failure criterion was used for the prediction of the bearing strength in the joints numerically. A good agreement was obtained between experimental results and numerical predictions.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4487
Author(s):  
Axel Clouet ◽  
Jérôme Vaillant ◽  
David Alleysson

Digital images are always affected by noise and the reduction of its impact is an active field of research. Noise due to random photon fall onto the sensor is unavoidable but could be amplified by the camera image processing such as in the color correction step. Color correction is expressed as the combination of a spectral estimation and a computation of color coordinates in a display color space. Then we use geometry to depict raw, spectral and color signals and noise. Geometry is calibrated on the physics of image acquisition and spectral characteristics of the sensor to study the impact of the sensor space metric on noise amplification. Since spectral channels are non-orthogonal, we introduce the contravariant signal to noise ratio for noise evaluation at spectral reconstruction level. Having definitions of signal to noise ratio for each steps of spectral or color reconstruction, we compare performances of different types of sensors (RGB, RGBW, RGBWir, CMY, RYB, RGBC).


2013 ◽  
Vol 479-480 ◽  
pp. 1027-1031
Author(s):  
Man Man Guo ◽  
Yun Xue Liu ◽  
Wen Qiang Fan

Spectrum sensing is a crucial issue in cognitive radio networks for primary user detection. Cooperative sensing based on energy detection in the cognitive radio network with multiple antennas base-station is considered in this letter. To improve the sensing performance, we investigate hybrid fusion of the observed energies from the base-station and decisions (1bit, hard information) from different cognitive radio (CR) users around the base-station. Further, we present an optimized scheme where the global detection probability can be maximized according to the Neyman-Pearson criterion. Finally the impact of the change of parameters (Signal to Noise Ratio and number of CR users) in the optimized scheme is analyzed. Numerical simulations and extensive analysis confirm that hybrid fusion base on the optimized scheme is a good choice, also, Signal to Noise Ratio (SNR) and number of CR users does not have influence on the optimized scheme


2020 ◽  
Author(s):  
Reinhardt Rading

<div>This paper investigates the impact on the optical</div><div>signal-to-noise ratio (OSNR) of the residual per span (RDPS) in a N × 100km dispersion managed system with zero total accumulated dispersion from input to output using split step Fourier method (SSFM) -Monte Carlo simulation. </div><div><br></div><div>This paper shows that the nonlinear interference NLI does in-fact impact the performance yielding different best working power depending on the value of Nx100 km span and the type of dispersion managed link. The paper shows that dispersion uncompensated optical links are preferable to dispersion managed fibers in equalizing NLI effects in long haul optical links.</div>


Sign in / Sign up

Export Citation Format

Share Document